www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Lotfußpunktverfahren
Lotfußpunktverfahren < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lotfußpunktverfahren: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:17 So 04.12.2011
Autor: lalalalinchen

Aufgabe
Gegeben ist der Punkt E(5,5|6|0,5) und die Punkte A(3|3|5) und B(3|8|1). Der Lotfußpunkt von E (der auf der Gerade AB liegt) soll bestimmt und der Spiegelpunkt von AB an der Spiegelachse AB angegeben werden.

Hey ihr Lieben,

ich hab das mal versucht, meine Lösung sieht aber anders aus als die Kontrollergebnisse des Lehrers, vielleicht kann mir einer von euch helfen und findet den 'Fehler im Zahlenhaufen' :D


Also hier meine Version:

Die Gerade AB hat die von mir ermittelte Gleichung [mm] g:\vec{x} [/mm] = [mm] \vektor{3 \\ 5 \\ 5} [/mm] + r * [mm] \vektor{0 \\ 3 \\ -4}[ [/mm] so weit richtig??]

Dann habe ich den Punkt E genommen, dessen Lotfußpunkt ich bilden soll, und habe ihn von der Geraden subtrahiert also
g - E = [mm] \vec{x} [/mm] = [mm] \vektor{3 \\ 5 \\ 5} [/mm] + r* [mm] \vektor{0 \\ 3 \\ -4} [/mm] - [mm] \vektor{5,5 \\ 6 \\ 0,5} [/mm] das habe ich dann zu [mm] \vektor{-2,5 \\ -1 \\ 4,5} [/mm] + r * [mm] \vektor{0 \\ 3 \\ -4} [/mm] zusammengefasst
[liegt hier irgendwo mein Fehler??]

Da diese Strecke ja senkrecht sein soll, muss das Skalarprodukt 0 sein also hab ich das wie folgt gemacht:

[mm] [\vektor{-2,5 \\ -1 \\ 4,5} [/mm] + r* [mm] \vektor{0\\ 3 \\ -4}] [/mm] *    [mm] \vektor{0 \\ 3 \\ -4} [/mm]  = 0
das hab ich dann so
[mm] \vektor{-2,5 \\ -1 \\ 4,5} *\vektor{0 \\ 3 \\ -4} [/mm] + r* [mm] \vektor{0 \\ 3 \\ -4} [/mm] * [mm] \vektor{0 \\ 3 \\ -4} [/mm] berechnet und es kommen in meiner Version -21 = 25r also r= 0,84 raus.
Irgendwo müsste ich mich vertan haben, denn mein Lehrer hat r=1 angegeben!

Hoffe ihr könnt mir helfen, vielen Dank schonmal, Lalalalinchen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Lotfußpunktverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 So 04.12.2011
Autor: MathePower

Hallo lalalalinchen,

> Gegeben ist der Punkt E(5,5|6|0,5) und die Punkte A(3|3|5)
> und B(3|8|1). Der Lotfußpunkt von E (der auf der Gerade AB
> liegt) soll bestimmt und der Spiegelpunkt von AB an der
> Spiegelachse AB angegeben werden.
>  Hey ihr Lieben,
>  
> ich hab das mal versucht, meine Lösung sieht aber anders
> aus als die Kontrollergebnisse des Lehrers, vielleicht kann
> mir einer von euch helfen und findet den 'Fehler im
> Zahlenhaufen' :D
>  
>
> Also hier meine Version:
>  
> Die Gerade AB hat die von mir ermittelte Gleichung
> [mm]g:\vec{x}[/mm] = [mm]\vektor{3 \\ 5 \\ 5}[/mm] + r * [mm]\vektor{0 \\ 3 \\ -4}[[/mm]
> so weit richtig??]
>  



Die Gerade g muss doch lauten:

[mm]g:\vec{x}[/mm] = [mm]\vektor{3 \\ \red{3\ \\ 5}[/mm] + r * [mm]\vektor{0 \\ 3 \\ -4}[/mm]



> Dann habe ich den Punkt E genommen, dessen Lotfußpunkt ich
> bilden soll, und habe ihn von der Geraden subtrahiert also
> g - E = [mm]\vec{x}[/mm] = [mm]\vektor{3 \\ 5 \\ 5}[/mm] + r* [mm]\vektor{0 \\ 3 \\ -4}[/mm]
> - [mm]\vektor{5,5 \\ 6 \\ 0,5}[/mm] das habe ich dann zu
> [mm]\vektor{-2,5 \\ -1 \\ 4,5}[/mm] + r * [mm]\vektor{0 \\ 3 \\ -4}[/mm]
> zusammengefasst
>  [liegt hier irgendwo mein Fehler??]
>  
> Da diese Strecke ja senkrecht sein soll, muss das
> Skalarprodukt 0 sein also hab ich das wie folgt gemacht:
>  
> [mm][\vektor{-2,5 \\ -1 \\ 4,5}[/mm] + r* [mm]\vektor{0\\ 3 \\ -4}][/mm] *    
> [mm]\vektor{0 \\ 3 \\ -4}[/mm]  = 0
>  das hab ich dann so
> [mm]\vektor{-2,5 \\ -1 \\ 4,5} *\vektor{0 \\ 3 \\ -4}[/mm] + r*
> [mm]\vektor{0 \\ 3 \\ -4}[/mm] * [mm]\vektor{0 \\ 3 \\ -4}[/mm] berechnet und
> es kommen in meiner Version -21 = 25r also r= 0,84 raus.
>  Irgendwo müsste ich mich vertan haben, denn mein Lehrer
> hat r=1 angegeben!
>  


Soll r=1 herauskommen, so muss der Punkt A [mm](3|\red{7}|5)[/mm] lauten.


> Hoffe ihr könnt mir helfen, vielen Dank schonmal,
> Lalalalinchen
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

>


Gruss
MathePower  

Bezug
                
Bezug
Lotfußpunktverfahren: Vertippt
Status: (Frage) beantwortet Status 
Datum: 23:30 So 04.12.2011
Autor: lalalalinchen

Hey, sorry habe gesehen, dass ich mich oben vertippt habe. A ist [mm] \vektor{3 \\ 5 \\ 5} [/mm]

also müsste auch die Gerade dann stimmen....

Ist meine Rechnung denn außer des Tippfehlers richtig?? Was sag' ich denn dann dem Lehrer?? r [mm] \not= [/mm] 1?? Mhhh... Dachte, dass meins falsch ist, weil da so 'seltsame' Zahlen rauskamen.

Danke für deine Hilfe, MathePower!!!

Bezug
                        
Bezug
Lotfußpunktverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 So 04.12.2011
Autor: MathePower

Hallo lalalalinchen,

> Hey, sorry habe gesehen, dass ich mich oben vertippt habe.
> A ist [mm]\vektor{3 \\ 5 \\ 5}[/mm]
>  
> also müsste auch die Gerade dann stimmen....
>


Ja, dann stimmt die Gerade.


> Ist meine Rechnung denn außer des Tippfehlers richtig??


Ja.


> Was sag' ich denn dann dem Lehrer?? r [mm]\not=[/mm] 1?? Mhhh...
> Dachte, dass meins falsch ist, weil da so 'seltsame' Zahlen
> rauskamen.

>

> Danke für deine Hilfe, MathePower!!!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de