LsgVon abs irreduziblenPolynom < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:55 Mo 09.07.2012 | Autor: | Imbecile |
Aufgabe 1 | Satz A:
Wenn [mm] F(x_1,...,x_n) [/mm] ein absolut irreduzibles Polynom mit ganzen Koeffizienten ist, hat die Kongruenz [mm] F(x_1,...,x_n)\equiv [/mm] 0(mod p) eine Lösung für alle Primzahlen p, die größer als eine nur von F abhängige Schranke sind. |
Aufgabe 2 | Man zeige, dass Satz A für das Polynom [mm] F=x^2+y^2 [/mm] falsch ist (bzgl. der nichttrivialen Lösungen). Dieses Polynom ist natürlich nicht absolut irreduzibel. |
Hallo!
Ich habe bereits einen Tipp bekommen, wie ich obiges Beispiel lösen kann, nur verstehe ich nicht genau, warum dieses den Satz dann widerlegt.
Also zu mir wurde gesagt, ich müsse nur zeigen, dass [mm] \{p:x^2+y^2=0 (mod p) hat nur triviale Lösung (x,y)=(0,0)\} [/mm] unendlich ist.
Das habe ich auch Beweisen können, nur fehlt mir das verständnis warum der Satz A widerlegt sein soll, wenn das unendlich ist.
Kann mir das jemand erklären?
Lg,
Imbecile
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:36 Di 10.07.2012 | Autor: | felixf |
Moin!
> Satz A:
> Wenn [mm]F(x_1,...,x_n)[/mm] ein absolut irreduzibles Polynom mit
> ganzen Koeffizienten ist, hat die Kongruenz
> [mm]F(x_1,...,x_n)\equiv[/mm] 0(mod p) eine Lösung für alle
> Primzahlen p, die größer als eine nur von F abhängige
> Schranke sind.
> Man zeige, dass Satz A für das Polynom [mm]F=x^2+y^2[/mm] falsch
> ist (bzgl. der nichttrivialen Lösungen). Dieses Polynom
> ist natürlich nicht absolut irreduzibel.
> Hallo!
>
> Ich habe bereits einen Tipp bekommen, wie ich obiges
> Beispiel lösen kann, nur verstehe ich nicht genau, warum
> dieses den Satz dann widerlegt.
> Also zu mir wurde gesagt, ich müsse nur zeigen, dass
> [mm]\{p:x^2+y^2=0 (mod p) hat nur triviale Lösung (x,y)=(0,0)\}[/mm]
> unendlich ist.
> Das habe ich auch Beweisen können, nur fehlt mir das
> verständnis warum der Satz A widerlegt sein soll, wenn das
> unendlich ist.
>
> Kann mir das jemand erklären?
Wenn Satz A fuer nichttriviale Loesungen richtig ist, dann ist deine Menge [mm] $\{p:x^2+y^2=0 (mod p) hat nur triviale Lösung (x,y)=(0,0)\}$ [/mm] durch die Schranke aus Satz A beschraenkt, und kann damit nicht unendlich sein.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:45 Di 10.07.2012 | Autor: | Imbecile |
Vielen Dank für die Rasche Antwort! Jetzt ist es mir klar!
|
|
|
|