www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Matlab" - MATLAB Algorithmus
MATLAB Algorithmus < Matlab < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

MATLAB Algorithmus: Aufgabe 19 c)
Status: (Frage) beantwortet Status 
Datum: 15:11 Di 05.12.2006
Autor: Fidel

Aufgabe
Beschreiben Sie folgenden Algorithmus, insbesondere die Bedeutung der Variablen [mm] u_k [/mm] und [mm] err_k. [/mm]

[mm] err_0 [/mm] = 0; [mm] S_0 [/mm] = 0;
Für k =1 bis n:
     [mm] u_k [/mm] = [mm] err_k_-_1 [/mm] + [mm] a_k; [/mm]
     [mm] S_k [/mm] = [mm] S_k_-_1 [/mm] + [mm] u_k; [/mm]
     [mm] err_k [/mm] = [mm] u_k [/mm] - [mm] (S_k [/mm] - [mm] S_k_-_1); [/mm]
end

Also es geht um die Berechnung von Summenfolgen mit dem Computer. Die Iterationsschleife ist klar. Aber was wird da gerechnet? [mm] (S_k [/mm] - [mm] S_k_-_1) [/mm] dort werden ja für grosse k zwei zunehmend gleichgrosse Zahlen subtrahiert -> Zunehmende Auslöschung. Soll damit irgendwie der Rundungsfehler kompensiert werden? Bei der Summierung von links nach rechts werden ja zu einer immer grösser werdenden Zahl zunehmend kleiner werdende addiert. -> Zunehmender Rundungsfehler.
Wer weiss mehr?








Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
MATLAB Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Di 05.12.2006
Autor: Martin243

Hallo,

ich weiß nicht, was das mit Matlab zu tun hat. Aber mal davon abgesehen können wir uns das mal genauer ansehen und uns wundern. Hat das Ganze eine Anwendung oder ist es eine ganz theoretische Übung?

Nun, formen wir etwas um. Für $k>0$ gilt:
[mm]err_k = u_k - \left(S_k - S_{k-1}\right) = u_k - \left(\left(S_{k-1}+u_k\right)-S_{k-1}\right)=u_k-u_k = 0[/mm]
Also: [mm] $err_k [/mm] = 0 [mm] \quad \forall k\in\IN$. [/mm]

Damit gilt für alle $k>0$:
[mm]u_k = err_{k-1} + a_k = 0 + a_k = a_k[/mm]
Also: [mm] $u_k [/mm] = [mm] a_k \quad \forall k\in\IN^{>0}$. [/mm]

Damit kommen wir auf:
[mm]S_k = S_{k-1} + u_k = S_{k-1} + a_k[/mm]
Mit [mm] $S_0$ [/mm] als Rekursionbasis kommen wir auf die simple Summe:
[mm]S_n = \sum_{k=1}^{n}a_k \quad \forall n\in\IN^{>0}[/mm]

Wenn du dich also nicht vertippt hast, dann sind die beiden Variablen nicht mehr als Dummies. OK, in Matlab nimmt [mm] $err_k$ [/mm] in manchen Schritten einen Wert in der Größenordnung von [mm] $\pm 10^{-16}$ [/mm] an. Geht es um diese numerischen Fehler?


Gruß
Martin


Bezug
                
Bezug
MATLAB Algorithmus: Präzisierung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:19 Di 05.12.2006
Autor: Fidel

Hallo Martin

Jetzt wo Du's sagst, der Algorithmus ist nicht unbedingt auf Matlab beschränkt. Wir benutzen halt dieses Programm in der Nummerik.
Bei uns geht's momentan schon um die Rundungsfehler und Stellendefekte.
Also Summenfolgen von links und von rechts aufsummieren und gucken was rauskommt. Der Witz an der Geschichte sollte halt sein, dass dieser Algorithmus irgendwie genauere Werte berechnet wenn Summenglieder aufsummiert werden. Es geht also um die kleinen Werte, die Du angesprochen hast.

Bezug
                        
Bezug
MATLAB Algorithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:48 Di 05.12.2006
Autor: Martin243

Ach so! Da kenne ich mich nicht so gut aus. Es mag ja sein, dass der Rundungsfehler zunimmt, aber nicht so stark wie bei der einfachen Summation.
Mit [mm] $err_k$ [/mm] berechnet man ja den bei der letzten Addition aufgetretenen Fehler und erzeugt mit [mm] $u_k [/mm] = [mm] a_k [/mm] + [mm] err_{k-1}$ [/mm] einen "fehlerkompensierten" Summanden für die nächste Addition. Man muss nämlich auf das Vorzeichen achten: Ist [mm] $S_k$ [/mm] nämlich durch einen Rundungsfehler zu groß geraten, dann wird [mm] $err_k$ [/mm] negativ und der nächste Summand wird vermindert. Umgekehrt sieht es aus, wenn [mm] $S_k$ [/mm] nach unten gerundet wurde. [mm] $err_k$ [/mm] ist dann positiv und [mm] $u_{k+1}$ [/mm] ist dann größer als [mm] $a_{k+1}$. [/mm]
Mehr kann ich als Laie dazu nicht sagen...


Gruß
Martin

Bezug
                                
Bezug
MATLAB Algorithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:57 Di 05.12.2006
Autor: Fidel

Hallo Martin

Das klingt schon nach etwas. Ich überleg's mir nochmal selber.
Besten Dank für die Mühe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de