www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - MA(q) Prozess
MA(q) Prozess < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

MA(q) Prozess: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:17 So 21.09.2014
Autor: Thomas_Aut

Aufgabe
Es sei [mm] $(\epsilon_{t})$ $\sim$ [/mm] $ [mm] WN(\sigma^{2})$ [/mm] ein weißes Rauschen mit Varianz [mm] $\sigma^2 [/mm] $. Weiters sind zwei lineare Filter $a(L) = [mm] 1+a_{1}L$ [/mm] und $b(L) = [mm] 1+b_{1}L$ [/mm] gegeben. (L ist der Lag-Operator und [mm] $a_{1},b_{1}$ [/mm] sind zwei reelle Zahlen.
Wir betrachten nun den Prozess [mm] $(y_{t})$, [/mm] der definiert ist durch
$ [mm] (y_{t}) =a(L)b(L)(\epsilon_{t}) [/mm] $
a) Zeige, dass [mm] $(y_{t})$ [/mm] ein MA(2) Prozess ist. Gib dazu eine passende Darstellung der Form
[mm] $(y_{t}) [/mm] = [mm] c_{0} [/mm] + [mm] c_{1}\epsilon_{t-1} [/mm] + [mm] c_{2}\epsilon_{t-2}$ [/mm] an.
b) Berechne Erwartungswert und Autokovarianzfkt. des Prozesses
c) Zeige, dass [mm] $(y_{t})$ [/mm] nur ein weißes Rauschen ist, wenn [mm] $a_{1},b_{1}=0$ [/mm] gilt.
d) Wann erfüllt die obige Darstellung die (strikte) Minimum-Phase Bedingung?

Hallo,

anbei poste ich meine Ideen zur Lösung - wäre super falls ihr da mal drüberschauen könnt.


ad a)

[mm](y_{t}) = (1+a_{1})(1+b_{1})(\epsilon_{t}) = (1+b_{1}L+a_{1}L+a_{1}b_{1}L)\epsilon_{t} = \epsilon_{t}+\epsilon_{t-1}(a_{1}+b_{1})+\epsilon_{t-2}a_{1}b_{1} [/mm]
also würden wir [mm] $c_{0} [/mm] = 1, [mm] c_{1} [/mm] = [mm] a_{1}+b_{1} [/mm] , [mm] c_{2} [/mm] = [mm] a_{1}b_{1}$ [/mm] wählen und hätten damit gezeigt, dass wir einen MA(2) Prozess haben.

ad b)

[mm] \mathbb{E}[y_{t}] = c_{0}\mathbb{E}[\epsilon_{t}] + c_{1}\mathbb{E}[\epsilon_{t-1}] +c_{2}\mathbb{E}[\epsilon_{t-2}] = 0 [/mm], da der Erwartungswert unabhängig von t ist.

ad c)
[mm] $\gamma(k)= \sigma^2 \sum_{j=0}^{j-k}c_{j+k}c_{j} [/mm] $ für $ 0 [mm] \le [/mm] k [mm] \le [/mm] q$

[mm] $\gamma(0) [/mm] = [mm] \sigma^2 (c_{0}^2 [/mm] + [mm] c_{1}^2 [/mm] + [mm] c_{2}^2)$ [/mm]
[mm] $\gamma(1) [/mm] = [mm] \sigma^2(c_{1}c_{0} [/mm] + [mm] c_{1}c_{2})$ [/mm]
[mm] $\gamma(2) [/mm] = [mm] c^2c_{2}c_{0}$ [/mm]

also:

[mm]\gamma(k) = \begin{cases} \sigma^2 (c_{0}^2 + c_{1}^2 + c_{2}^2), & \mbox{für } k=0 \\ \sigma^2(c_{1}c_{0} + c_{1}c_{2}), & \mbox{für } k=1 \\ c^2c_{2}c_{0} & \mbox{für } k = 2 \\ 0 & \mbox{für }k>2 \end{cases}[/mm]

ad c)

für [mm] $a_{1} [/mm] = [mm] b_{1} [/mm] = 0 $ folgt [mm] $c_{1} [/mm] = [mm] c_{2} [/mm] = 0$ und damit
[mm] $(y_{t}) [/mm] = [mm] \epsilon_{t} [/mm] $, und [mm] $\epsilon_{t} \sim WN(\sigma^2) [/mm] $

d) Es soll $y(z) [mm] \neq [/mm] 0$ für $|z| [mm] \le [/mm] 1$

[mm] $1-c_{1}z [/mm] - [mm] c_{2}z^2 [/mm] =  0 $
[mm] $\Rightarrow z_{1,2} \neq \frac{\frac{c1}{c2}}{2} \pm \sqrt{(\frac{\frac{c1}{c2}}{2})^2 + \frac{1}c_{2}}$ [/mm]

Beste Grüße und Dank

Thomas

        
Bezug
MA(q) Prozess: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:17 Di 23.09.2014
Autor: Thomas_Aut

Um das Ablaufdatum zu verlängern.

Ich hoffe, dass sich das mal jemand anschauen kann.


Lg und Danke

Bezug
        
Bezug
MA(q) Prozess: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 Sa 27.09.2014
Autor: steppenhahn

Hallo Thomas,

> Es sei [mm](\epsilon_{t})[/mm] [mm]\sim[/mm] [mm]WN(\sigma^{2})[/mm] ein weißes
> Rauschen mit Varianz [mm]\sigma^2 [/mm]. Weiters sind zwei lineare
> Filter [mm]a(L) = 1+a_{1}L[/mm] und [mm]b(L) = 1+b_{1}L[/mm] gegeben. (L ist
> der Lag-Operator und [mm]a_{1},b_{1}[/mm] sind zwei reelle Zahlen.
>  Wir betrachten nun den Prozess [mm](y_{t})[/mm], der definiert ist
> durch
>  [mm](y_{t}) =a(L)b(L)(\epsilon_{t})[/mm]
>  a) Zeige, dass [mm](y_{t})[/mm]
> ein MA(2) Prozess ist. Gib dazu eine passende Darstellung
> der Form
>  [mm](y_{t}) = c_{0} + c_{1}\epsilon_{t-1} + c_{2}\epsilon_{t-2}[/mm]
> an.
>  b) Berechne Erwartungswert und Autokovarianzfkt. des
> Prozesses
>  c) Zeige, dass [mm](y_{t})[/mm] nur ein weißes Rauschen ist, wenn
> [mm]a_{1},b_{1}=0[/mm] gilt.
>  d) Wann erfüllt die obige Darstellung die (strikte)
> Minimum-Phase Bedingung?
>  Hallo,
>  
> anbei poste ich meine Ideen zur Lösung - wäre super falls
> ihr da mal drüberschauen könnt.
>  
>
> ad a)
>  
> [mm](y_{t}) = (1+a_{1}\red{L})(1+b_{1}\red{L})(\epsilon_{t}) = (1+b_{1}L+a_{1}L+a_{1}b_{1}\red{L^2})\epsilon_{t} = \epsilon_{t}+\epsilon_{t-1}(a_{1}+b_{1})+\epsilon_{t-2}a_{1}b_{1}[/mm]

>

> also würden wir [mm]c_{0} = 1, c_{1} = a_{1}+b_{1} , c_{2} = a_{1}b_{1}[/mm]
> wählen und hätten damit gezeigt, dass wir einen MA(2)
> Prozess haben.


Das Endergebnis ist richtig, aber oben in deiner Herleitung der Koeffizienten fehlt manchmal der Lag-Operator. Ich habe es rot hinzugefügt.


> ad b)
>  
> [mm]\mathbb{E}[y_{t}] = c_{0}\mathbb{E}[\epsilon_{t}] + c_{1}\mathbb{E}[\epsilon_{t-1}] +c_{2}\mathbb{E}[\epsilon_{t-2}] = 0 [/mm],
> da der Erwartungswert unabhängig von t ist.

Ja, weil [mm] $\IE[\varepsilon_t] [/mm] = 0$ für alle $t$.

> ad c)
>  [mm]\gamma(k)= \sigma^2 \sum_{j=0}^{j-k}c_{j+k}c_{j}[/mm] für [mm]0 \le k \le q[/mm]
>  
> [mm]\gamma(0) = \sigma^2 (c_{0}^2 + c_{1}^2 + c_{2}^2)[/mm]
>  
> [mm]\gamma(1) = \sigma^2(c_{1}c_{0} + c_{1}c_{2})[/mm]
>  [mm]\gamma(2) = \red{c^2}c_{2}c_{0}[/mm]

Alles richtig, bis auf das Rote (Schreibfehler), da sollte [mm] $\sigma^2$ [/mm] stehen.


> also:
>
> [mm]\gamma(k) = \begin{cases} \sigma^2 (c_{0}^2 + c_{1}^2 + c_{2}^2), & \mbox{für } k=0 \\ \sigma^2(c_{1}c_{0} + c_{1}c_{2}), & \mbox{für } k=1 \\ \red{c^2} c_{2}c_{0} & \mbox{für } k = 2 \\ 0 & \mbox{für }k>2 \end{cases}[/mm]


Ja!


> ad c)
>  
> für [mm]a_{1} = b_{1} = 0[/mm] folgt [mm]c_{1} = c_{2} = 0[/mm] und damit
>  [mm](y_{t}) = \epsilon_{t} [/mm], und [mm]\epsilon_{t} \sim WN(\sigma^2)[/mm]


Ja, aber das ist nicht die Aufgabe.
Du sollst zeigen, dass wenn der Prozess [mm] $y_t$ [/mm] ein weißes Rauschen ist, [mm] $a_1,b_1 [/mm] = 0$ gelten muss. Du hast das umgekehrte gezeigt.

Beginne so: Ist [mm] $y_t$ [/mm] ein weißes Rauschen, so gilt [mm] $\gamma(0) [/mm] = [mm] \sigma^2$, $\gamma(k) [/mm]  = 0$ für $|k| [mm] \ge [/mm] 1$. Du hast oben die Autokovarianzfunktion explizit ausgerechnet und kannst daher aus diesen Gleichungen Aussagen für [mm] $a_1,b_1$ [/mm] folgern.



> d) Es soll [mm]y(z) \neq 0[/mm] für [mm]|z| \le 1[/mm]
>  
> [mm]1-c_{1}z - c_{2}z^2 = 0[/mm]


Sollte dein Polynom nicht c(z) = 1 + [mm] c_1 [/mm] z + [mm] c_2 z^2 [/mm] lauten? Schließlich ist dein MA-Prozess [mm] $y_t [/mm] = [mm] \varepsilon_{t} [/mm] + [mm] c_1 \varepsilon_{t-1} [/mm] + [mm] c_2 \varepsilon_{t-2}$. [/mm]

Dessen Nullstellen sind

$1 + [mm] c_1 [/mm] z + [mm] c_2 z^2 [/mm] = 0 [mm] \gdw z^2 [/mm] + [mm] \frac{c_1}{c_2} [/mm] z + [mm] \frac{1}{c_2} [/mm] = 0 [mm] \gdw z_{1,2} [/mm] = [mm] -\frac{c_1}{2c_2} \pm \sqrt{\left(\frac{c_1}{2c_2}\right)^2 - \frac{1}{c_2}}$. [/mm]

Du musst nun herausfinden, für welche [mm] $a_1,b_1$ [/mm] gilt:

[mm] |z_{1,2}| [/mm] > 1.

(Nullstellen außerhalb des Einheitskreises). Dann ist die strict minimum phase Bedingung erfüllt.

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de