www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - ML-Schätzer bei nur einer Beob
ML-Schätzer bei nur einer Beob < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ML-Schätzer bei nur einer Beob: Tipp, Hilfe
Status: (Frage) beantwortet Status 
Datum: 15:16 Di 13.07.2010
Autor: kegel53

Aufgabe
Sei [mm] L(\vartheta):=\bruch{1}{\vartheta}\cdot{}1_{[0,\vartheta]}(x) [/mm] meine Likelihoodfunktion.
Bestimmen Sie den ML-Schätzer für [mm] \vartheta, [/mm] wenn es nur die eine Beobachtung X=0,6 gibt.

Hallo Leute,
hab vorhin eine Aufgabe aufgeschnappt und würd gern wissen, wie diese zu lösen ist.

Ich kann hierbei ja schlecht [mm] log\big(L(\vartheta)\big) [/mm] nach [mm] \vartheta [/mm] ableiten, wie ich das normalerweise mach.
Ist hier dann einfach [mm] \vartheta=0,6 [/mm] oder wie geht man ansonsten vor?

Besten Dank schon mal.

        
Bezug
ML-Schätzer bei nur einer Beob: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Di 13.07.2010
Autor: vivo

Hallo,

du musst natürlich die 0,6 für x einsetzen und dann die funktion nach

[mm]\vartheta[/mm]

ableiten um dasjenige [mm]\vartheta[/mm] zu finden für welches die funktion maximal wird.

Pass auf die Indikatorfunktion auf und prüfe mit zweiter ableitung ob wirklich ein max vorliegt.

gruß

Bezug
                
Bezug
ML-Schätzer bei nur einer Beob: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Di 13.07.2010
Autor: kegel53

Hmm.. ich versteh nicht ganz wie das gehn soll.

Was ist denn [mm] ln\big(1_{[0,6,\infty)}(\vartheta)\big)?? [/mm]
Und muss ich die beobachteten Werte nicht erst am Ende einsetzen, also z.B. wenn ich am Ende weiß dass [mm] \vartheta=\bruch{x_1+...+x_n}{n} [/mm] ist, dann kann ich doch erst meine n beobachteten Werte [mm] X_1,...,X_n [/mm] einsetzen oder?

Danke schon mal.

Bezug
                        
Bezug
ML-Schätzer bei nur einer Beob: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Di 13.07.2010
Autor: vivo

Hallo,

warum willst du die Funktion eigentlich unbedingt logarithmieren? Dies ist doch nur ein Trick um die Likelihoodfunktion in manchen fällen zu vereinfachen, da der ln einer Funktion die selben extremstellen hat wie die funktion selbst. In diesem Fall ist eine logarithmierung nicht nötig.

Bitte lies dir allgemein noch mal das vorgehen bei einer ml schätzung, wenn n (hier ist nätürlich auch n=1 zugelassen) beobachtungen vorliegen durch. []Link

Gruß


Bezug
                                
Bezug
ML-Schätzer bei nur einer Beob: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:43 Di 13.07.2010
Autor: kegel53

Ah okay, gut dann weiß ich das jetzt auch. Ich kannte das bisher eben nur mithilfe der logarithmierten Funktion.

Aber dann weiß ich trotzdem noch nicht sicher, wie die Ableitung aussieht.
Ist dann [mm] \bruch{d}{d\vartheta} L(\vartheta)=\bruch{-1}{\vartheta^2}\cdot{}1_{[0,6,\infty)}(\vartheta)?? [/mm]

Vorausgesetzt das stimmt, wie find ich dann mein Maximum?
Die Abletung 0 setzen führt hier ja irgendwie nicht zum Ziel, zumindest wüsst ich nicht wie ich sinnvoll nach [mm] \vartheta [/mm] auflösen könnte?!

Bezug
                                        
Bezug
ML-Schätzer bei nur einer Beob: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 Di 13.07.2010
Autor: vivo

bitte schreib nochmal die dichte der ZV genau auf und auch alles andere aus der aufgabe ...

danke

Bezug
                                                
Bezug
ML-Schätzer bei nur einer Beob: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Di 13.07.2010
Autor: kegel53

Ich weiß zwar nicht warum aber gut.

Ich hab eine ZV X, die gleichverteilt auf [mm] [0,\vartheta] [/mm] ist.
Es ist nun der ML-Schätzer für [mm] \vartheta [/mm] gesucht, wobei es nur eine Beobachtung X=0,6 gibt.

Dann komm ich eben auf die oben genannte Likelihoodfunktion, mit der ich allerdings nicht zum Ziel komme.
Was mach ich falsch??

Bezug
                                                        
Bezug
ML-Schätzer bei nur einer Beob: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Di 13.07.2010
Autor: vivo

fall unterscheidung:

1. Fall: [mm] $0<\vartheta [/mm] < 0,6

Likelihoodfunktion konstant (was bedeutet dies für den ML-Schätzer?)

2. Fall: [mm] $\vartheta \geq [/mm] 0,6$

beachte hier, dass [mm] $\frac{1}{\vartheta}$ [/mm] immer kleiner wird je größer [mm] $\vartheta$ [/mm] wir.

gruß


Bezug
                                                                
Bezug
ML-Schätzer bei nur einer Beob: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 Di 13.07.2010
Autor: kegel53

D.h. mein [mm] \vartheta [/mm] ist hier einfach 0,6??

Wobei ich im 1. Fall nicht weiß, was das für den ML-Schätzer beudeutet, heißt das der ML-Schätzer ist gerade gleich der Likelihoodfunktion?

Bezug
                                                                        
Bezug
ML-Schätzer bei nur einer Beob: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Di 13.07.2010
Autor: vivo

ja [mm] $\vartheta$ [/mm] ist einfach 0,6

so hab ich das mit dem ersten fall nicht gemeint.

kanns einfach ist es doch so, dass die Dichte immer kleiner wird je größer [mm] $\vartheta$ [/mm] wird, da du jetzt aber 0,6 beobachtet hast, muss [mm] $\vartheta$ [/mm] je mindestens 0,6 sein.

da du [mm] $\vartheta$ [/mm] aufgrund von ml schätzung so belegen willst dass die Dichte maximal wird (wodurch auch die Wahrscheinlichkeit der Beobachtung maximal wird) muss es 0,6 sein, da die Dichte für Werte von [mm] $\vartheta$ [/mm] größer als 0,6 abnimmt.

gruß

Bezug
                                                                                
Bezug
ML-Schätzer bei nur einer Beob: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Di 13.07.2010
Autor: kegel53

Alles klar, dank dir.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de