www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Mächtigkeit von Potenzmengen
Mächtigkeit von Potenzmengen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mächtigkeit von Potenzmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:07 So 27.11.2011
Autor: MiguelVal

Aufgabe
Seien M und N zwei gleichmächtige (nicht notwendig endliche) Mengen, d.h. es gibt eine bijektive Abbildung f von M nach N. Zeigen Sie, dass auch [mm] \mathcal{P}(M) [/mm] und [mm] \mathcal{P}(N) [/mm] gleichmächtig sind.

Ich muss also zeigen dass eine Bijektive Abb. von [mm] \mathcal{P}(M), [/mm] also der Potenzmenge von M nach [mm] \mathcal{P}(N) [/mm] existiert.
Bei endlichen Mengen, denke ich kann ich mit der Anzahl argumentieren. Also seien M,N gleichmächtig, d.h. die Anzahl der jeweiligen Elemente ist gleich (sei sie gleich n). Dann folgt dass auch Die Anzahl der Elemente in [mm] \mathcal{P} [/mm] (N) und [mm] \mathcal{P} [/mm] (M) dieselbe ist, nämlich 2 hoch n.
Und da hatten wir einen Satz, dass dann eine Bijektion zwischen [mm] \mathcal{P}(N) [/mm] und [mm] \mathcal{P}(M) [/mm] existiert.

Aber wie argumentiere ich bei unendlichen Mengen?
Wäre über Hilfe sehr dankbar!
Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Mächtigkeit von Potenzmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 So 27.11.2011
Autor: fred97


> Seien M und N zwei gleichmächtige (nicht notwendig
> endliche) Mengen, d.h. es gibt eine bijektive Abbildung f
> von M nach N. Zeigen Sie, dass auch [mm]\mathcal{P}(M)[/mm] und
> [mm]\mathcal{P}(N)[/mm] gleichmächtig sind.
>  Ich muss also zeigen dass eine Bijektive Abb. von
> [mm]\mathcal{P}(M),[/mm] also der Potenzmenge von M nach
> [mm]\mathcal{P}(N)[/mm] existiert.
>  Bei endlichen Mengen, denke ich kann ich mit der Anzahl
> argumentieren. Also seien M,N gleichmächtig, d.h. die
> Anzahl der jeweiligen Elemente ist gleich (sei sie gleich
> n). Dann folgt dass auch Die Anzahl der Elemente in
> [mm]\mathcal{P}[/mm] (N) und [mm]\mathcal{P}[/mm] (M) dieselbe ist, nämlich
> 2 hoch n.
>  Und da hatten wir einen Satz, dass dann eine Bijektion
> zwischen [mm]\mathcal{P}(N)[/mm] und [mm]\mathcal{P}(M)[/mm] existiert.
>  
> Aber wie argumentiere ich bei unendlichen Mengen?
>  Wäre über Hilfe sehr dankbar!
>  Grüße
>  


Es gibt eine Bijektion f:M [mm] \to [/mm] N

Definiere g:[mm]\mathcal{P}(M)[/mm] [mm] \to[/mm]  [mm]\mathcal{P}(N)[/mm]  wie folgt:

    für X [mm] \in[/mm]  [mm]\mathcal{P}(M)[/mm] setze [mm] g(X)=\{f(x):x \in X\} [/mm]

Zeige : g ist bijektiv.

FRED

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Bezug
                
Bezug
Mächtigkeit von Potenzmengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:30 So 27.11.2011
Autor: MiguelVal

vielen Dank

Bezug
                
Bezug
Mächtigkeit von Potenzmengen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:15 So 27.11.2011
Autor: MiguelVal

Aufgabe
zeige g ist bijektiv

Komme doch noch nicht richtig weiter.
Kann ich folgendermaßen vorgehen?

zeige zunächst, g ist injektiv:
seien X,X´ [mm] \in \mathcal{P} [/mm] (M) mit g(X) = g(X´)

zu zeigen: X=X´
es gilt also g(X)= [mm] \{f(x): x \in X \} [/mm] = [mm] \{ f(x strich ) : x strich \in Xstrich \} [/mm] = g(X´)

sei f(x) [mm] \in [/mm] g(X) beliebig, dann folgt wegen Mengengleichheit f(x) [mm] \in [/mm] g(X´),
nun und jetzt denke ich muss die Injektivität von f irgendwie genutzt werden (ist vorhanden, da f nach Vor. bijektiv) um zu zeigen dass X=X´...
weis aber nicht wie?

Bezug
                        
Bezug
Mächtigkeit von Potenzmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Mo 28.11.2011
Autor: angela.h.b.


> zeige g ist bijektiv
>  Komme doch noch nicht richtig weiter.
>  Kann ich folgendermaßen vorgehen?
>  
> zeige zunächst, g ist injektiv:
>  seien X,X´ [mm]\in \mathcal{P}[/mm] (M) mit g(X) = g(X´)
>  
> zu zeigen: X=X´
>  es gilt also g(X)= [mm]\{f(x): x \in X \}[/mm] = [mm]\{ f(x strich ) : x strich \in Xstrich \}[/mm]
> = g(X´)

Hallo,

[willkommenmr].

sei [mm] x\in [/mm] X.
Es ist

> Sei f(x) [mm]\in[/mm] g(X) beliebig, dann folgt wegen
> Mengengleichheit f(x) [mm]\in[/mm] g(X´),


also gibt es ein [mm] x'\in [/mm] X' mit f(x)=f(x').
Also ist x=x', also ist [mm] x\in [/mm] X'.

Damit haben wir schonmal [mm] X\subseteq [/mm] X'

Gruß v. Angela

>  nun und jetzt denke ich muss die Injektivität von f
> irgendwie genutzt werden (ist vorhanden, da f nach Vor.
> bijektiv) um zu zeigen dass X=X´...
>  weis aber nicht wie?  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de