www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Magnetische Feldstärke H
Magnetische Feldstärke H < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Magnetische Feldstärke H: Abhängigkeit zum Radius
Status: (Frage) beantwortet Status 
Datum: 20:21 Di 05.05.2009
Autor: ImminentMatt

Hier bin ich mir einfach nicht sicher, ob meine Lösung korrekt ist und zwar bin ich folgerndermaßen vorgegangen:

a)

1. Fall:

r [mm] \ge r_{0} [/mm]

ist ja die einfache Formel

[mm] H=\bruch{i}{2\pi r} [/mm]

2. Fall:

r < [mm] r_{0} [/mm]

Hier war ich mir nicht so recht sicher, aber ich bin davon ausgegangen:

Die Stärker vom magnetischen Feld (H,B) hängt ja auch von der Stromstärke i ab.
Die Stromstärke hängt hingegen von der Querschnittsfläche ab, welche in diesem Fall kleiner als vorher ist.

Daraus habe ich dann (s. Bild) folgendes gebastelt:
i für r < [mm] r_{0} =i*\bruch{r}{r_{0}} [/mm]

Ich hätte aber hier gerne noch Argumentationshilfe, da ich nicht denke, dass man anhand des bildes das legitim schlussfolgern darf. Mir ist aber nunmal nix besseres eingefallen und dieses i habe ich nun in obige formel eingesetzt und bekomme

H= [mm] \bruch{i*r}{2\pi r_{0}^{2}} [/mm]

Und bei letzterem Fall weiss ich nichtmal ob es richtig ist, aber mir ist nix anderes eingefallen.

b) Wäre dann quasi ein seichter Verlauf von 0 bis zum hochpunkt der bei [mm] r=r_{0} [/mm] liegt und dann wieder reziprok zum abstand zum leiter wieder abfällt.

Vielen Dank

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
        
Bezug
Magnetische Feldstärke H: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Mi 06.05.2009
Autor: Rene

Hallo

Deine Berechnung ist richtig, unter der Annahme, dass der Strom homogen über den Leiterquerschnitt verteilt ist. Stichwort ist hier das Amper'sche Durchflutungsgesetz.

[mm] \integral_{\partial A}{\vec{H}\cdot d\vec{s}} = \iint\limits_{A}{\vec{J}\cdot d\vec{A}}[/mm]

Für eine Kreisquerschnitt kannst du schreiben [mm] ds = r\cdot d\varphi[/mm]
Daraus folgt zunächst

(1) [mm] \integral_{\partial A}{H\cdot ds} = \integral_{0}^{2\pi}{H(r)r\cdot d\varphi}=2\pi r H(r)[/mm]

Da der Strom homogen über den Querschnitt verteilt ist, gilt

[mm] J=\begin{cases} \frac{I}{\pi r_0^2}, & \mbox{für } r\leq r_0 \\ 0, & \mbox{für } r > r_0 \end{cases}[/mm]

Somit gilt für die rechte Seite der Gleichung

[mm]\iint\limits_{A}{\frac{I}{\pi r_0^2}\cdot dA}={\frac{I}{\pi r_0^2}\iint\limits_{A}{dA}[/mm]

In Polarkoordinaten
(2) [mm]{\frac{I}{\pi r_0^2}\integral_0^{2\pi}{\integral_0^R{r\cdot dr\cdot d\varphi}} = {\frac{2I}{r_0^2}\integral_0^R{r\cdot dr}[/mm]

Innerhalb des Leiters gilt [mm]R=r[/mm] und ausserhalb [mm]R=r_0[/mm], da [mm]J=0[/mm] für [mm]r>r_0[/mm]

Mit (1) und (2) gilt innerhalb des Leiters
[mm] 2\pi r H(r) = \frac{2I}{r_0^2}\integral_0^r{r\cdot dr} = \frac{I}{r_0^2}\cdot r^2[/mm]
[mm]H(r) = \frac{I}{2\pi r_0^2}\cdot r[/mm]

Mit (1) und (2) gilt ausserhalb des Leiters
[mm] 2\pi r H(r) = \frac{2I}{r_0^2}\integral_0^{r_0}{r\cdot dr} = \frac{I}{r_0^2}\cdot r_0^2=I[/mm]
Offensichtlich richtig, da ausserhalb des Leiters, der gesamte Strom eingeschlossen ist. (Analogie zum Gaußsches Gesetz)
[mm]H(r) = \frac{I}{2\pi r}[/mm]

Für den Verlauf der Feldstärke des Leiters mit Kreisquerscnitt gilt

[mm]H(r) = \begin{cases} \frac{I}{2\pi r_0^2}\cdot r, & \mbox{für } r\leq r_0\\ \frac{I}{2\pi r}, & \mbox{für } r>r_0\end{cases}[/mm]

MFG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de