Mal wieder invarianz < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hi, ich komme mit dieser invarianz einfach nicht klar.
Ich habe hier so eine Aufgabe:
Sei V ein Vektorraum, sei f: V--> V ein Endomorphismus sein [mm] U_1 [/mm] und [mm] U_2 [/mm] (teilmenge von )V in V f-invariante Unterräume
Ich soll jetzt zeigen, dass [mm] U_1 [/mm] geschnitten [mm] U_2 [/mm] und [mm] U_1 [/mm] + [mm] U_2 [/mm] f-invariant sind.
Ich ieß zwar, dass ich zeigen muß, dass wenn ich ein element aus [mm] U_1 [/mm] nehme und ein aus [mm] U_2 [/mm] und diese beiden Inklusionen darauf anwende sie wieder in [mm] U_1 [/mm] und [mm] U_2 [/mm] sein müssen, aber wie verstehe ich einfach nicht.
Wäre echt nett, falls mir das mal jemand an diesem Beispiel erklären könnte.
Dann wäre da noch:
Sei [mm] \gamma [/mm] _1 [mm] \not= \gamma [/mm] _2
Und sei A= [mm] J(\gamma_1 [/mm] , (3)) direkte Summe [mm] J(\gamma_2 [/mm] , (2))
und ich soll alle f-invarianten Unterräume bestimmen. Da ich berets das obere nicht kann, weiß ich auch bei dieser Aufgabe nicht weiter.
Wäre echt damkbar für hilfe.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:05 Do 28.04.2005 | Autor: | Wogi |
U heißt f-invariant, falls f, eingeschränkt auf U, die Menge U zumindest auf eine Teilmenge von U abbildet.
Das heißt das selbe wie:
Sei [mm] u\in [/mm] U und U sei f-invariant. Dann gilt: f(u) [mm] \in [/mm] U.
Wenn ja, dann ist deine Aufgabe leicht.
Sei [mm] v\in U_{1}\cap U_{2}. [/mm] Dann ist [mm] f(v)\in U_{1}, [/mm] weil v in [mm] U_1 [/mm] liegt und f [mm] U_{1} [/mm] nach [mm] U_{1} [/mm] abbildet und f(v) [mm] \in U_{2}, [/mm] weil [mm] v\in U_{2} [/mm] liegt und f [mm] U_{2} [/mm] nach [mm] U_{2} [/mm] abbildet.
Dann ist also [mm] f(v)\in U_{1}\cap U_{2}, [/mm] was bedeutet [mm] U_{1}\cap U_{2} [/mm] ist f-invariant.
Für [mm] U_{1}+U_{2} [/mm] kannst du dir das ja selber überlegen.
Man muß also also nachsehen, wo das f(v) liegt, wenn [mm] v\in U_{1}+U_{2} [/mm] ist. Muß f(v) auch in dieser Menge liegen, dann ist die Menge f-invariant. Wenn es möglich ist, daß f(v) außerhalb dieser Menge liegt, dann ist die Menge nicht f-invariant.
|
|
|
|