www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Man untersuche auf Konvergenz
Man untersuche auf Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Man untersuche auf Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Fr 11.01.2008
Autor: schletzing

Aufgabe
Man untersuche auf Konvergenz:

[mm] a_k [/mm] = [mm] \bruch{k}{3k + 1} [/mm] + [mm] \wurzel[k]{k} [/mm]

Ich probiere bereits seit geraumer Zeit hier den Grenzwert zu finden, bislang ohne Erfolg.

Habe mir gedacht ich könnte die Grenzwerte der beiden Summanden getrennt voneinander berechnen. Habe versucht auf den ersten Summanden das Quotientenkriterium anzuwenden und auf den zweiten das Wurzelkriterium. Vielleicht denke ich zu kompliziert und es ist nur eine simple Umformung erforderlich und ich sehe sie einfach nicht...?

Also: Was muss ich tun um hier an den Grenzwert zu kommen? Hat jemand eine Idee?

Dankeschön im Voraus für Eure Hilfe...

        
Bezug
Man untersuche auf Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Fr 11.01.2008
Autor: Halloomid1493

Hallo,
Wenn den Grenzwert der Folge rechnen willst,musst du einfach den Grenzwert einzelne Terme rechnen und einfach aufsummieren,
Also, [mm] \bruch{k}{3k+1} [/mm] wenn k gegen unendlich konvengiert ist 1/3 und [mm] \wurzel[k]{k} [/mm] ist 1
also das Ganze konvengier gegen 4/3.
Grüß,
Omid

Bezug
        
Bezug
Man untersuche auf Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Fr 11.01.2008
Autor: XPatrickX


> Man untersuche auf Konvergenz:
>  
> [mm]a_k[/mm] = [mm]\bruch{k}{3k + 1}[/mm] + [mm]\wurzel[k]{k}[/mm]
>  Ich probiere bereits seit geraumer Zeit hier den Grenzwert
> zu finden, bislang ohne Erfolg.
>  
> Habe mir gedacht ich könnte die Grenzwerte der beiden
> Summanden getrennt voneinander berechnen. Habe versucht auf
> den ersten Summanden das Quotientenkriterium anzuwenden und
> auf den zweiten das Wurzelkriterium.

QK- und Wurzelkriterium liefern ja nur eine Möglichkeit zur Bestimmung von Kovergenz bzw. Divergenz von Reihen.
Damit kannst du ja kein Grenzwert von Folgen ausrechnen.

>Vielleicht denke ich

> zu kompliziert und es ist nur eine simple Umformung
> erforderlich und ich sehe sie einfach nicht...?
>
> Also: Was muss ich tun um hier an den Grenzwert zu kommen?
> Hat jemand eine Idee?
>  
> Dankeschön im Voraus für Eure Hilfe...

Gruß Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de