www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Politik/Wirtschaft" - Marginale Konsumquote bestimme
Marginale Konsumquote bestimme < Politik/Wirtschaft < Geisteswiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Politik/Wirtschaft"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Marginale Konsumquote bestimme: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:52 So 09.03.2008
Autor: LordHorst

Aufgabe
Gegeben sei eine Konsumfunktion C = 750 + 100 [mm] Y^{0,5}. [/mm]
a) Bestimmen Sie die marginale Konsumquote. Was sagt diese aus?
b) Berechnen Sie die marginale Konsumquote für einen Haushalt mit einem Einkommen von 2.500 € und für einen Haushalt mit einem Einkommen von 90.000 €.

Ich stehe bei dieser Aufgabe total auf dem Schlauch. Wie kann ich hier die marginale Konsumquote bestimmen?
Mit der Formel [mm] \bruch{dC}{dY}=c [/mm] komme ich hier überhaupt nicht zurecht :( .

        
Bezug
Marginale Konsumquote bestimme: Hilfestellung
Status: (Antwort) fertig Status 
Datum: 11:54 So 09.03.2008
Autor: Analytiker

Moin Jan,

> Gegeben sei eine Konsumfunktion C = 750 + 100 [mm]Y^{0,5}.[/mm]
> a) Bestimmen Sie die marginale Konsumquote. Was sagt diese aus?
> b) Berechnen Sie die marginale Konsumquote für einen
> Haushalt mit einem Einkommen von 2.500 € und für
> einen Haushalt mit einem Einkommen von 90.000 €.
>  Ich stehe bei dieser Aufgabe total auf dem Schlauch. Wie
> kann ich hier die marginale Konsumquote bestimmen?
>  Mit der Formel [mm]\bruch{dC}{dY}=c[/mm] komme ich hier überhaupt
> nicht zurecht :( .

Also dann wollen wir mal ;-)!

zu a)
Die marginale Konsumquote, kurz cY, beschreibt den Anteil des Einkommens, den die privaten Haushalte einer Volkswirtschaft an der nächsten zusätzlichen (marginalen) Einkommenseinheit konsumieren, d.h. nicht sparen. Allgemein lässt sich sich die private Konsumnachfrage C dann als folgend beschreiben:

$ C = [mm] C_{autonom} [/mm] + [mm] c_{Y} [/mm] * Y $

Die marginale Konsumneigung ist die Ableitung des Konsums C nach dem Einkommen Y. Also hier:

$ [mm] C_{Y} [/mm] = [mm] \bruch{dC}{dY} [/mm] $

Dabei muss folgende Bedingung gelten:

$ 0 < [mm] C_{Y} [/mm] < 1 $

Die marginale Konsumneigung ergibt sich aus der Differenz von 1 und der marginalen Sparneigung [mm] S_{Y}. [/mm] Das heißt, dass Geld, das nicht für den Konsum ausgegeben wird, gespart wird.

$ [mm] C_{Y} [/mm] = 1 - [mm] S_{Y} [/mm] $

zu b)
Hier musst du nun im Prinzip nur noch das umsetzen, was wir in a) festgehalten haben. Für das Einkommen Y die gegebenen Werte einsetzen, und nach obigen Schema berechnen. Alles klaro? ;-)

Ich hoffe das du jetzt alleine weiterkommst. Falls nicht, scheue dich nicht deine Probleme hier zu posten!

Liebe Grüße
Analytiker
[lehrer]

Bezug
                
Bezug
Marginale Konsumquote bestimme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:39 So 09.03.2008
Autor: LordHorst


> Also dann wollen wir mal ;-)!
>
> zu a)
>  Die marginale Konsumquote, kurz cY, beschreibt den Anteil
> des Einkommens, den die privaten Haushalte einer
> Volkswirtschaft an der nächsten zusätzlichen (marginalen)
> Einkommenseinheit konsumieren, d.h. nicht sparen. Allgemein
> lässt sich sich die private Konsumnachfrage C dann als
> folgend beschreiben:
>  
> [mm]C = C_{autonom} + c_{Y} * Y[/mm]
>  
> Die marginale Konsumneigung ist die Ableitung des Konsums C
> nach dem Einkommen Y. Also hier:
>  
> [mm]C_{Y} = \bruch{dC}{dY}[/mm]

Jetzt wird mir auch zum ersten mal klar, daß mit dC nicht [mm] C_{autonom} [/mm] gemeint ist... schonmal ein Brett vor dem Kopf weniger! :)

> Dabei muss folgende Bedingung gelten:
>  
> [mm]0 < C_{Y} < 1[/mm]
>  
> Die marginale Konsumneigung ergibt sich aus der Differenz
> von 1 und der marginalen Sparneigung [mm]S_{Y}.[/mm] Das heißt, dass
> Geld, das nicht für den Konsum ausgegeben wird, gespart
> wird.
>  
> [mm]C_{Y} = 1 - S_{Y}[/mm]

Soweit klar, und auch logisch.
  

> zu b)
>  Hier musst du nun im Prinzip nur noch das umsetzen, was
> wir in a) festgehalten haben. Für das Einkommen Y die
> gegebenen Werte einsetzen, und nach obigen Schema
> berechnen. Alles klaro? ;-)

Mal sehen. dC wäre also [mm] 1/2*100*Y^{-0,5}, [/mm] ergibt für Y=2500 also 1, für 90.000 ist die Konsumquote [mm] \bruch{1}{6}, [/mm] richtig?.
Ich glaube, die Bretter vor dem Kopf werden immer weniger! :)

Bezug
                        
Bezug
Marginale Konsumquote bestimme: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 So 09.03.2008
Autor: Analytiker

Hi du,

> Jetzt wird mir auch zum ersten mal klar, daß mit dC nicht
> [mm]C_{autonom}[/mm] gemeint ist... schonmal ein Brett vor dem Kopf
> weniger! :)

Natürlich nicht ;-)! Das ist ein Irrtum... aber jetzt behoben *g*!

> Soweit klar, und auch logisch.

Würde ich mal sagen, ne! *lol*
  

> Mal sehen. dC wäre also [mm]1/2*100*Y^{-0,5},[/mm] ergibt für Y=2500
> also 1, für 90.000 ist die Konsumquote [mm]\bruch{1}{6},[/mm]
> richtig?.
> Ich glaube, die Bretter vor dem Kopf werden immer weniger! :)

[ok] Das sieht doch mal gut aus. ;-)

Liebe Grüße
Analytiker
[lehrer]

Bezug
                                
Bezug
Marginale Konsumquote bestimme: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:56 So 09.03.2008
Autor: LordHorst


> [ok] Das sieht doch mal gut aus. ;-)

Juhuu! Vielen Dank für die Hilfe! :-)

Gruß
Horst

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Politik/Wirtschaft"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de