www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Markov-Kette / "Wartezeit"
Markov-Kette / "Wartezeit" < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Markov-Kette / "Wartezeit": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Mi 31.05.2006
Autor: kl.mu

Aufgabe
Sei X = [mm] (X_{n}: [/mm] ( [mm] \Omega,\mathcal{A},P) \to [/mm] (I, [mm] 2^{I}): [/mm] n [mm] \in \IN_{0}) [/mm] eine homogene Markov-Kette mit Uebergangsmatrix P = [mm] (p_{ij}: [/mm] i,j [mm] \in [/mm] I). Sei [mm] P(X_{0} [/mm] = k) = 1 und [mm] p_{k,k} [/mm] > 0.
[mm] W_{1}(k) [/mm]  = inf{n [mm] \in \IN_{+}: X_{n} \not= [/mm] k} sei die Zeit bis zum ersten Betreten eines anderen Zustandes als k (einschliesslich). Bestimmen Sie die Verteilung von [mm] W_{1}(k) [/mm] ueber ihre Zaehldichte.

Hallo!

Ich habe folgenden Ansatz zur Loesung dieser Aufgabe:

(Bemerkung: ich bin der Meinung, die Aufgabenstellung schreit nach der [mm] Geo^{+} [/mm] -Verteilung)

1. Da [mm] P(X_{0} [/mm] = k) = 1 gegeben ist, startet man im Zustand k.

2. Der Uebergang in den gleichen Zustand, also k nach k, soll als Misserfolg angesehen werden.

3. Der Uebergang in einen anderen Zustand als k, soll als Erfolg angesehen werden.

4. Die Z-Dichte der Vetreilung [mm] Geo^{+} [/mm] ist gegeben durch [mm] geo^{+}(p:n) [/mm] := p * [mm] q^{n-1}, [/mm] n = 1, 2, 3, ... (wobei gilt: 0 < p < 1 und q = 1 - p)

5. In Bezug auf die Aufgabenstellung ist somit  0 < q = [mm] p_{k,k} [/mm] < 1 und p = 1 - [mm] p_{k,k} [/mm]

6. Somit muesste die Verteilung von [mm] W_{1}(k) [/mm] gegeben sein durch [mm] geo^{+}(1 [/mm] - [mm] p_{k,k}; p_{k,k}) [/mm] = p * [mm] q^{n-1} [/mm] = (1 - [mm] p_{k,k}) [/mm] * [mm] p_{k,k}^{n-1}, [/mm] n = 1, 2, 3, ...

KORREKTUR: Habe mich verschrieben - bei Punkt 6 muss es [mm] geo^{+}(1 [/mm] - [mm] p_{k,k}; [/mm] n) = ... heissen und nicht [mm] geo^{+}(1 [/mm] - [mm] p_{k,k}; p_{k,k}) [/mm] = ...


Nun bin ich mir nicht ganz sicher, ob mein Gedankengang korrekt ist (zumal ich auch nicht weiss, was der Ausdruck inf{} bedeutet). Ich waere daher sehr dankbar, fuer Korrekturvorschlaege oder sonstige Ideen.

km

----------------------------------------------------------------------------------------------
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Markov-Kette / "Wartezeit": Antwort
Status: (Antwort) fertig Status 
Datum: 00:23 Do 01.06.2006
Autor: djmatey


>  Hallo!

Hi! :-)

>  
> Ich habe folgenden Ansatz zur Loesung dieser Aufgabe:
>  
> (Bemerkung: ich bin der Meinung, die Aufgabenstellung
> schreit nach der [mm]Geo^{+}[/mm] -Verteilung)

ja! ganz laut!

>  
> 1. Da [mm]P(X_{0}[/mm] = k) = 1 gegeben ist, startet man im Zustand
> k.

yep!

>  
> 2. Der Uebergang in den gleichen Zustand, also k nach k,
> soll als Misserfolg angesehen werden.
>  
> 3. Der Uebergang in einen anderen Zustand als k, soll als
> Erfolg angesehen werden.

Geometrische Verteilung modelliert ja das Warten auf den ersten Erfolg, genau!

>  
> 4. Die Z-Dichte der Vetreilung [mm]Geo^{+}[/mm] ist gegeben durch
> [mm]geo^{+}(p:n)[/mm] := p * [mm]q^{n-1},[/mm] n = 1, 2, 3, ... (wobei gilt:
> 0 < p < 1 und q = 1 - p)
>  
> 5. In Bezug auf die Aufgabenstellung ist somit  0 < q =
> [mm]p_{k,k}[/mm] < 1 und p = 1 - [mm]p_{k,k}[/mm]
>  
> 6. Somit muesste die Verteilung von [mm]W_{1}(k)[/mm] gegeben sein
> durch [mm]geo^{+}(1[/mm] - [mm]p_{k,k}; p_{k,k})[/mm] = p * [mm]q^{n-1}[/mm] = (1 -
> [mm]p_{k,k})[/mm] * [mm]p_{k,k}^{n-1},[/mm] n = 1, 2, 3, ...
>  

Sieht alles gut aus :-)

>
> Nun bin ich mir nicht ganz sicher, ob mein Gedankengang
> korrekt ist (zumal ich auch nicht weiss, was der Ausdruck
> inf{} bedeutet). Ich waere daher sehr dankbar, fuer
> Korrekturvorschlaege oder sonstige Ideen.

Der Ausdruck inf{} bezeichnet das Infimum, die größte untere Schranke einer Menge - hier also den ersten Zeitpunkt, zu dem [mm] X_n \not= [/mm] k ist.
LG Matthias.

>  
> km
>  
> ----------------------------------------------------------------------------------------------
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Markov-Kette / "Wartezeit": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:35 Do 01.06.2006
Autor: kl.mu

Hallo Matthias,

vielen Dank fuer die Hilfestellung!

Gruss,
Eugen (km)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de