www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Markov Epidemie
Markov Epidemie < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Markov Epidemie: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:36 Di 22.03.2011
Autor: CraigSager

Aufgabe
In einer Population leben n Einwohner. Zum Zeitpunkt t = 0 bricht eine bis dato unbekannte
Krankheit aus, mit der sich n' der n Einwohner inzieren.
Steckt sich ein Einwohner an, so bricht die Krankheit erst nach einer gewissen Inkubationszeit
aus, in der seine Arbeitskraft unvermindert bleibt. Die Wahrscheinlichkeit,
dass die Krankheit nach einer Periode ausbricht, beträgt dabei q1 und die Wahrscheinlichkeit
für eine zweiperiodige Inkubationszeit q2 = 1-q1. Nach Ausbruch der Krankheit
überlebt ein Einwohner mit Wahrscheinlichkeit psurvive jeweils für eine weitere Periode.
Zudem ist die Arbeitskraft eines Einwohner nach Ausbruch der Krankheit eingeschränkt.
Tritt eine Zustandsänderung eines Einwohners auf, so wird davon ausgegangen, dass dieser
erst am Ende einer Periode Wirkung hat, der Einwohner während der Periode also
noch als dem alten Zustand zugehörig zu betrachten ist.
Ein gesunder Einwohner wird von jedem inzierten Einwohner mit der Wahrscheinlichkeit
pinfect (pinfect <= 1/n) angesteckt. Sind also bereits m Einwohner inziert, so steckt sich
jeder gesunde Einwohner mit der Wahrscheinlichkeit m pinfect an.

Modellieren Sie den Verlauf der Krankheit als homogene Markov-Kette und beschreiben
Sie Ihre Modellierung.

Wenn ich den Zustandsraum entsprechend erweitere damit die Markov-eigenschaft erfüllt bleibt explodiert die Größe der Übergangsmatrix.

Mit (Xt,Yt,Zt) - Xt Gesunde, Yt alle Infektionsüberträger, Z = t also einer künstlichen Zeitachse könnte man es modellieren aber wie kann man dann eine Aussage über die Verteilung nach t perioden treffen?

Wie kann man das mit einer bivariaten (diskreten) Markov-Kette modellieren ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Markov Epidemie: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Sa 26.03.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de