www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "stochastische Prozesse" - Markov/Feller-Prozesse
Markov/Feller-Prozesse < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Markov/Feller-Prozesse: Zusammenhang, Gegenbsp
Status: (Frage) überfällig Status 
Datum: 19:14 Fr 09.12.2011
Autor: Bappi

Aufgabe
Hallo! Ich habe folgende Frage

Gegeben haben wir einen Markov-Prozess [mm] $((X_t)_{t\geq 0}, \mathbb P^{sx})$, [/mm] der beispielsweise die Bewegung eines Teilchen für $t [mm] \geq [/mm] s$ schreibt, dass zur Zeit $s$ in der Position [mm] $X_s [/mm] = x$ startet. Für [mm] $X_s [/mm] < 0$ bewegt sich das Teilchen mit konstanter Geschwindigkeit nach links; für [mm] $X_s [/mm] > 0$ nach rechts. Ist [mm] $X_s [/mm] = 0$, so bewegt sich das Teilchen mit Wahrscheinlichkeit [mm] $\frac [/mm] 12$ in eine der beiden Richtungen. Formal können wir das so schreiben:

[mm] $\mathbb P^{sx}(X_t [/mm] = x + (t-s), t [mm] \geq [/mm] s) = 1, [mm] \quad [/mm] x > 0$
[mm] $\mathbb P^{sx}(X_t [/mm] = x - (t-s), t [mm] \geq [/mm] s) = 1, [mm] \quad [/mm] x < 0$
[mm] $\mathbb P^{sx}(X_t [/mm] = t-s, t [mm] \geq [/mm] s) = [mm] \mathbb P^{sx}(X_t [/mm] = -(t-s), t [mm] \geq [/mm] s) = [mm] \frac [/mm] 12 [mm] \quad [/mm] x=0$

Nun ist zu zeigen, dieser Prozess ist Markov, aber nicht Feller.


Erst zur Definition. Dazu definieren wir für einen MP $X$ einen Übergangsoperator

[mm] $P_{st}u(x) [/mm] = [mm] \mathbb E^{sx}u(X_t) [/mm] = [mm] \int_{\mathbb R} [/mm] u(y) p(s, x; t, [mm] \mathrm [/mm] dy)$

wo $p(s, x; t, [mm] \mathrm [/mm] dy)$ die Übergangsfunktion des MP bezeichnet. Gilt für diese Operatoren-Halbgruppe [mm] $P_{st} [/mm] : [mm] C_b \to C_b$ [/mm] (stetig und beschränkt), dann nennen wir den Prozess Feller-Prozess.

Nun werden wir ja sehen, dass das Ergebnis nicht mehr stetig ist. Intuitiv wird es natürlich in der Form

[mm] $P_{st}u(x) [/mm] = [mm] \int_{\mathbb R} [/mm] u(y) p(x, s; t, [mm] \mathrm [/mm] d y) = [mm] \begin{cases} u(x + (t-s)), & x > 0\\ u(x - (t-s)), & x < 0\\ \frac 12 u(t-s) + \frac 12 u(s-t), & x = 0\end{cases}$ [/mm]

aussehen und damit hat [mm] $P_{st}u(x)$ [/mm] offensichtlich eine Unstetigkeit in $x=0$.

Nun meine Frage: Wie kann man es explizit berechnen?

Der Ansatz wäre einfach ausrechnen:

[mm] $P_{st}u(x) [/mm] = [mm] \mathbb E^{sx}u(X_t) [/mm] = [mm] \int u(X_t) \mathbb P^{sx}_{X_t}$ [/mm]

und gleich die Integrationsgebiete aufzuspalten:

[mm] $\int u(X_t) \mathbb P^{sx}_{X_t} [/mm] = [mm] \left( \int_{X_t < 0} + \int_{X_t > 0} + \int_{X_t = 0}\right) u(X_t) \mathbb P^{sx}_{X_t}$ [/mm]
$= [mm] \int_{x<0} [/mm] u(x + (t-s)) [mm] \mathbb P^{sx}(X_t \in \mathrm [/mm] dx) + [mm] \int_{x>0} [/mm] u(x - (t-s)) [mm] \mathbb P^{sx}(X_t \in \mathrm [/mm] dx) + ?$

Nur stimmt der letzte Term dann offensichtlich nicht...

MfG.

        
Bezug
Markov/Feller-Prozesse: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 11.12.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "stochastische Prozesse"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de