www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Maße
Maße < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maße: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:08 Sa 01.05.2010
Autor: chrissi2709

Aufgabe
Gegeben seien Mengen [mm] \Omega [/mm] und Mengensysteme [mm] \mathcal{M}. [/mm] Gib jeweils zwei verschiedene MAße auf [mm] \sigma(\mathcal{M}) [/mm] an, die auf [mm] \mathcal{M} [/mm] die gleichen Werte annehmen.

1. [mm] \Omega [/mm] = {1,2,3,4}, [mm] \mathcal{M} [/mm] = {{1,2},{2,4},{1,3},{3,4}}
2. [mm] \Omega [/mm] = [mm] \{1,2\}^{2}, \mathcal{M} [/mm] = {{(1,2),(1,1)},{(1,2),(2,2)},{(2,1),(1,1)},{(2,1),(2,2)}}

Hallo,

ich versteh ja so grundsätzlich die, was Maße sind, aber ich weiß nicht, wie ich aus einem [mm] \Omega [/mm] und einem Mengensystem Maße angeben kann.
Mir würde auch ein beispiel genügen.

Schon mal vielen Dank

fg
Chrissi

        
Bezug
Maße: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Sa 01.05.2010
Autor: luis52

Moin Christina,


Betrachte [mm] $\Omega=\{1,2\}$ [/mm] und [mm] $\mathcal{M}=\{\{1\}\}$. [/mm] Setze [mm] $P(\{1\})=1/3$. [/mm] Dann hast du nicht mehr sehr viele Moeglichkeiten, ein Mass auf [mm] $\sigma(\mathcal{M})=\{\emptyset,\Omega,\{1\},\{2\}\}$ [/mm] zu finden ...

vg Luis    

Bezug
                
Bezug
Maße: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 Sa 01.05.2010
Autor: chrissi2709

Hallo Luis,

danke für die Antwort;

wären dann meine zwei maße zu 1.
[mm] \sigma(\mathcal{M}_1) [/mm] = { [mm] \emptyset, \Omega, [/mm] { 1,2 },{ 3,4 }}
[mm] \sigma(\mathcal{M}_2) [/mm] = { [mm] \emptyset, \Omega, [/mm] { 1,3 },{ 2,4 }}
und zu 2.
[mm] \sigma(\mathcal{M}_1) [/mm] = { [mm] \emptyset, \Omega, [/mm] { (1,2),(1,1) },{ (2,1),(2,2) }}
[mm] \sigma(\mathcal{M}_2) [/mm] = { [mm] \emptyset, \Omega, [/mm] { (1,2),(2,2) },{ (2,1),(1,1) }}

oder stimmt das so nicht?

fg
Chrissi

Bezug
                        
Bezug
Maße: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Sa 01.05.2010
Autor: steppenhahn

Hallo,

> oder stimmt das so nicht?

Ich sehe keine Maße, sondern nur Teilmengen der Sigma-Algebren! Maße sind Abbildungen, die Elementen der Sigma-Algebren (reelle) Zahlen zuordnen!
Du musst dir drei wesentliche Eigenschaften von Maßen zu nutze machen und auch beachten: Maße sind größergleich Null, Sigma-Additiv (was heißt das?) und werden durch die Angabe der Bilder der einelementigen Teilmengen einer Sigma-Algebra über einem abzählbaren [mm] \Omega [/mm] eindeutig definiert (warum?)

Das will zum Beispiel bei 1) heißen:

Wenn du [mm] P(\{1\}) [/mm] = ..., [mm] P(\{2\}) [/mm] = ..., [mm] P(\{3\}) [/mm] = ..., [mm] P(\{4\}) [/mm] = ... angibst und alle Werte, die du angegeben hast, größer gleich Null sind, hast du automatisch ein Maß definiert.

Vorschlag Nr. 1: Wähle [mm] $P_{1}(\{i\}) [/mm] = 1/4$ für alle i = 1,2,3,4.

Vorschlag Nr. 2: Nun musst du noch ein [mm] P_{2} [/mm] definieren. Verwende dazu zweimal die Werte "1/2" und zweimal "0".

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de