www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Maße auf abelscher Gruppe Q
Maße auf abelscher Gruppe Q < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maße auf abelscher Gruppe Q: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 So 03.02.2008
Autor: Irmchen

Aufgabe
Bestimmen Sie alle translationsinvarianten Maße auf der abelschen Gruppe [mm] Q [/mm] versehen mit der [mm] \sigma [/mm] - Algebra [mm] \mathcal P ( \mathbb Q [/mm]

Guten Tag!

Dies ist eine weitere Übungsaufgabe, für die ich auch eine Lösung habe,  aber leider auch  ein paar Unklarheiten. Vielleicht kann mir jemand dabei helfen..

So zur Lösung:

Sei [mm] \mu : \mathcal P ( \mathbb Q ) \to \left[ 0, \infty \right] [/mm] translationsinvariantes Maß.
( * * ) Für [mm] x, y \in \mathbb Q [/mm] ist
[mm] \mu ( \{ x \} ) = \mu ( \{ (y-x) +y \} ) = \mu (\{ y \} ) [/mm]

Daraus folgt, dass es ein [mm] c \in \left[ 0, \infty \right] [/mm] gibt mit [mm] \mu ( \{ x \} ) = c [/mm] [mm] \forall [/mm] x [mm] \in \mathbb [/mm] Q [/mm].

Wenn [mm] A \subset \mathbb Q [/mm] abzählbar also, und  [mm] A = \dot {\bigcup_{ a \in A } } \{ a \} [/mm].

Dann folgt, aufgrund der [mm] \sigma[/mm] - Additivität des Maßes, dass
[mm] \mu (A) = \summe_{ a \in A } \mu( \{a \} ) = \summe_{ a \in A } c [/mm]

Deswegen gibt es drei Fälle:

1. [mm] c = 0 [/mm] [mm] : \Longrightarrow \mu = 0 & ( \mu (A) = 0 \forall A \in \mathbb Q ) [/mm]

2. [mm] 0 < c < \infty [/mm]  

[mm] \Longrightarrow [/mm]

[mm] \mu (A) = \left\{\begin{matrix} n \cdot c , & \# A = n < \infty \\ \infty, & \# A = \infty \end{matrix}\right. [/mm]

3. [mm] c = \infty [/mm]

[mm]\Longrightarrow [/mm]
[mm] \mu (A) = \left\{\begin{matrix} \infty , & A \not \emptyset \\ 0, & A = \emptyset \end{matrix}\right. [/mm]


So meine Unklarheit ist (** ) . Warum gilt
[mm] x, y \in \mathbb Q [/mm] ist
[mm] \mu ( \{ x \} ) = \mu ( \{ (y-x) +y \} ) = \mu (\{ y \} ) [/mm] ?
Es ist klar, dass das die Translationsinvarianz ist, aber ich verstehe nicht warum ich später [mm] \mu (\{ y \} ) [/mm] herausbekommen? Muss da nicht eigentlich ein x stehen?

Viele Grüße
Irmchen


    

        
Bezug
Maße auf abelscher Gruppe Q: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 So 03.02.2008
Autor: Deuterinomium


> Dies ist eine weitere Übungsaufgabe, für die ich auch eine
> Lösung habe,  aber leider auch  ein paar Unklarheiten.
> Vielleicht kann mir jemand dabei helfen..
>  
> So zur Lösung:
>  
> Sei [mm]\mu : \mathcal P ( \mathbb Q ) \to \left[ 0, \infty \right][/mm]
> translationsinvariantes Maß.
>  ( * * ) Für [mm]x, y \in \mathbb Q[/mm] ist
>  [mm]\mu ( \{ x \} ) = \mu ( \{ (y-x) +y \} ) = \mu (\{ y \} )[/mm]
>  

Hi!
Also du benutzt hier nur, dass: [mm]x,y \in \IQ [/mm] und du die translationsinvarianten Maße auf ganz [mm] \IQ [/mm] bestimmen sollst.
Für ein solches Maß und die Menge {x} gilt dann natürlich :
[mm]\mu ( \{ x \} ) = \mu ( \{ (y-x)+y \} ) = \mu (\{ y +(y-x) \} )[/mm]
Das Maß soll aber auf ganz [mm]\IQ [/mm] translationsinvariant sein, also auch für die Menge {y}. Na und [mm] (y-x)+y [/mm] ist eben auch eine Translation von y.
Ich hoffe, jetzt ist der Rest klar!

Gruß Deuterinomium

Bezug
                
Bezug
Maße auf abelscher Gruppe Q: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:31 Mo 04.02.2008
Autor: Irmchen

Hallo!

Ja, jetzt ist alles klar :-) !

Danke!
Viele Grüße
Irmchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de