www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Massenbestimmung der Erde
Massenbestimmung der Erde < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Massenbestimmung der Erde: Frage
Status: (Frage) beantwortet Status 
Datum: 20:42 Fr 03.12.2004
Autor: Peida

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe folgendes Problem:
Die Masse des Erdkerns soll berechnet werden. Der Erdkern hat einen Radius von 3470km. Die Dichte ändert sich mit dem Radius linear. Dichte bei Radius 0 ist 13.4g*cm^-3. Bei Radius 3470 beträgt die Dichte 10.4g*cm^-3.

Masse ist bekanntlich ja Volumen*Dichte.

Mein Problem ist das, dass ich nicht weiß wie ich die Dichte in Abhängigkeit des Radius reinbring. Ich denk mir mal über Integralrechnung.
Aber wie?

        
Bezug
Massenbestimmung der Erde: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Sa 04.12.2004
Autor: Loddar

Guten Morgen Peida,

[willkommenmr] !!!

Zuerst würde ich mir die Gleichung für die Dichte in Abhängigkeit des Radius ermitteln.

Wir haben gegeben:
[mm] $\rho(R=0) [/mm] = 13,4 [mm] \bruch{g}{cm^3} [/mm] = 0,0134 [mm] \bruch{t}{m^3}$ [/mm]
[mm] $\rho(R=3470 [/mm] km) = 10,4 [mm] \bruch{g}{cm^3} [/mm] = 0,0104 [mm] \bruch{t}{m^3}$ [/mm]

Daraus folgt:
[mm] $\rho(r) [/mm] = 0,0134 - [mm] \bruch{0,0030}{3470*1000} [/mm] * r$

Einheiten:
[mm] $\rho$ [/mm] in [mm] $\bruch{t}{m^3}$ [/mm]
r in m


Das bekannte Kugelvolumen mit $V = [mm] \bruch{4}{3}*\pi*R^3$ [/mm] ergibt sich auch aus der Integration der Kugeloberfläche $O = [mm] 4*\pi R^2$ [/mm] von 0 bis R.

Mit diesem Wissen, kombiniert mit der Formel $m = [mm] \rho [/mm] * V$ ergibt sich für unsere Massenberechnung:

$m = [mm] \integral_{0}^{R}{\rho(r) * O(r) dr}$ [/mm]
$m = [mm] \integral_{0}^{R}{[(0,0134 - \bruch{0,0030}{3470*1000} * r) * 4 * \pi * r^2] dr}$ [/mm]
$m = 4 * [mm] \pi [/mm] * [mm] \integral_{0}^{R=3470*10^3 m}{(0,0134 * r^2 - \bruch{0,0030}{3470*1000} * r^3) dr}$ [/mm]

Achtung: R in m einsetzen. Dann erhalten wir als Einheit „Tonnen“ (t).

Ich habe als Endwert $m = [mm] 1,9514*10^{18} [/mm] t$ erhalten.

Zum Vergleich:
Eine Kugel mit eine konstanten Dichte von [mm] $\rho [/mm] = 13,4 [mm] \bruch{g}{cm^3}$ [/mm] ergibt eine Masse von $m = [mm] 2,3452*10^{18} [/mm] t $. Das erscheint mir plausibel von der Größenordnung (83%).

Ich hoffe, ich habe jetzt nicht total daneben gehauen ...


Ein schönes Wochenende + Grüße Loddar



Bezug
                
Bezug
Massenbestimmung der Erde: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:29 Sa 04.12.2004
Autor: Peida

Danke, hast mir wirklich sehr geholfen!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de