www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Matrix
Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix: Rang einer Matrix
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:42 Fr 22.10.2004
Autor: lomac

Ich hab diese Frage in keinem weiteren Forum gestellt.

Ich frische zur Zeit für ein nebenberufliches Studium meine Mathekenntnisse auf. Mit Matrizen hatte ich bisher noch nie im Leben etwas zu tun.
Kann mir bitte jemand in leicht nachvollziehbaren Schritten erklären wie der Rang der folgenden Matrix lautet ?

[mm] \pmat{1 & 0 & -1 & 2 \\ 0 & 2 & 1 &-1 \\ 1 & 2 & 0 & 1 \\ -1 & 0 & 1 & -2 } [/mm]

Bereits im voraus vielen herzlichen Dank.


        
Bezug
Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Fr 22.10.2004
Autor: Marc

Hallo lomac,

>  Kann mir bitte jemand in leicht nachvollziehbaren
> Schritten erklären wie der Rang der folgenden Matrix lautet
> ?
>  
> [mm]\pmat{1 & 0 & -1 & 2 \\ 0 & 2 & 1 &-1 \\ 1 & 2 & 0 & 1 \\ -1 & 0 & 1 & -2 } [/mm]

Kennst du das Gauß-Verfahren zum Lösen linearer Gleichungen?
Mit diesem Verfahren kannst du die Matrix --nur durch Addition von Vielfachen von Zeilen zu anderen Zeilen-- auf Zeilenstufenform ("Dreiecksgestalt") bringen.
Die Anzahl der Zeilen, die mindestens einen von Null verschiedenen Eintrag haben, ist dann der Rang der Matrix.

Ich schlage vor, du probierst erstmal, die Matrix auf Dreiecksgestalt zu bringen (da ich davon ausgehe, dass du das Gauß-Verfahren bereits kennst) und meldest dich mit deinen Ergebnissen wieder.

Viele Grüße,
Marc

Bezug
                
Bezug
Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:20 Fr 22.10.2004
Autor: lomac

Hallo Marc,

das Gauß-Verfahren sagt mir leider nichts - ist für mich absolutes Neuland und es ist sehr schwer sich einzufinden.
Kannst Du mir bitte aufzeigen, wie Du an die Sache rangehen würdest ?

Bezug
                        
Bezug
Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Fr 22.10.2004
Autor: Marc

Hallo lomac,

> das Gauß-Verfahren sagt mir leider nichts - ist für mich
> absolutes Neuland und es ist sehr schwer sich
> einzufinden.

Ui, das mußt du nachholen. Der Gauß-Algorithmus ist ein Verfahren zum Lösen von linearen Gleichungssystemen, und wird dir bestimmt noch sehr häufig begegnen.

>  Kannst Du mir bitte aufzeigen, wie Du an die Sache
> rangehen würdest ?

Zunächst einmal wende ich wie in dieser Antwort beschrieben, den Gauß-Algorithmus auf deine Matrix an.
Weitere Beispiele zum Gauß-Algorithmus findest du auch []hier.
Ich denke, besser als dort könnte ich es hier auch nicht erklären.

Zum besseren Einstieg zeige ich dir mal die ersten Umformungen:

Start:
[mm] \pmat{1 & 0 & -1 & 2 \\ \red{0} & 2 & 1 &-1 \\ \red{1} & 2 & 0 & 1 \\ \red{-1} & 0 & 1 & -2 } [/mm]

Ziel (das sollte man immer vor Augen haben ;-))
[mm] \pmat{? & ? & ? & ? \\ \red{0} & ? & ? &? \\ \red{0} & \red{0} & ? & ? \\ \red{0} & \red{0} & \red{0} & ? } [/mm]

Meine ersten drei Umformung sollen erreichen, dass die rot markierten Einträge der ersten Spalte verschwinden (Null werden).

Die erste Null der ersten Spalte ist bereits vorhanden, es gibt also nicht dafür zu tun.
Die zweite Null erreiche ich, indem ich das (-1)-fache der ersten Zeile zur dritte Zeile addiere:

[mm] \pmat{1 & 0 & -1 & 2 \\ \red{0} & 2 & 1 &-1 \\ \red{0} & 2 & 1 & -1 \\ \red{-1} & 0 & 1 & -2 } [/mm]

Die dritte Null in der ersten Spalte erreiche ich durch (einfache) Addition der ersten Zeile zur vierten Zeile:

[mm] \pmat{1 & 0 & -1 & 2 \\ \red{0} & 2 & 1 &-1 \\ \red{0} & 2 & 1 & -1 \\ \red{0} & 0 & 0 & 0 } [/mm]

Jetzt nehme ich mir die Nullen der zweiten Spalte vor:

[mm] \pmat{1 & 0 & -1 & 2 \\ 0 & 2 & 1 &-1 \\ 0 & \red{2} & 1 & -1 \\ 0 & \red{0} & 0 & 0 } [/mm]

Die erste Null (an der Stelle der jetzigen 2) erzeuge ich durch Addition des (-1)-fachen der zweiten Zeile zur dritte Zeile:

[mm] \pmat{1 & 0 & -1 & 2 \\ 0 & 2 & 1 &-1 \\ 0 & \red{0} & 0 & 0 \\ 0 & \red{0} & 0 & 0 } [/mm]

Durch "Zufall" ist damit die gewünschte Dreiecksgestalt bereits erreicht:

[mm] \pmat{1 & 0 & -1 & 2 \\ \red{0} & 2 & 1 &-1 \\ \red{0} & \red{0} & 0 & 0 \\ \red{0} & \red{0} & \red{0} & 0 } [/mm]

Ich zähle jetzt nur noch die Zeilen, die mindestens einen von Null verschiedenen Eintrag haben; das sind 2 Stück.

Also hat deine Matrix den Rang 2.

[mm] $\operatorname{Rang} \pmat{1 & 0 & -1 & 2 \\ 0 & 2 & 1 &-1 \\ 1 & 2 & 0 & 1 \\ -1 & 0 & 1 & -2 }=2$ [/mm]

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de