www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrix
Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix: hilfe schreibweise
Status: (Frage) beantwortet Status 
Datum: 09:55 Mo 11.02.2008
Autor: neo-killer

Aufgabe
Aufgabe 35: (2 + 2 Punkte)
Seien j, l, n [mm] \in \IN [/mm] mit 1 [mm] \le [/mm] j, l [mm] \le [/mm] n, [mm] \lambda \in [/mm]  K. Betrachten Sie im [mm] K^{n,n} [/mm] die Elementarmatrizen
[mm] F_j_l(\lambda) [/mm] := [mm] I_n +\lambda \vartriangle_j_l, [/mm] j [mm] \not= [/mm] l; [mm] F_j(\lambda) =In+(\lambda [/mm] -1) [mm] \vartriangle_j_j [/mm] , [mm] \lambda \not= [/mm] 0.
Zeigen Sie:
1. Für j [mm] \not= [/mm] l, [mm] \lambda \not= [/mm] 0 gilt: [mm] F_j_l(\lambda) [/mm] = [mm] F_l(1/ \lambda) F_j_l(1) F_l(\lambda); [/mm]

2. Für j [mm] \not= [/mm] l,  [mm] \lambda, [/mm] μ [mm] \in [/mm] K gilt: [mm] F_j_l(\lambda) F_j_l( [/mm] μ) = [mm] F_j_l(\lambda+ [/mm] μ).

Hi , also  ich hab die aufgabe sch0on abgegeben und hab das ganze  mit der Matrix schreibweise gemacht und bekamm 2 von 4 punkten.

kommentar war

die Matrix schreibweise ist Bei dieser Aufgabe sehr unpreziese.

wie kann mand as denn anders schreiben?
kann mir wer das zeigen


ich hab das Mit Matrizen gemacht

[mm] F_l [/mm] (1/ [mm] \lambda)= [/mm]
[mm] \begin{pmatrix} 1 & 0 & . & . & . & . & . & . & 0\\ 0 & 1 & . & . & . & . & . & . & 0\\ . & . & 1 & . & . & . & . & . & 0\\ . & . & . & 1 & . & . & . & . & 0\\ . & . & . & . & 1/\lambda & . & . & . & 0\\ . & . & . & . & . & 1 & . & . & 0\\ . & . & . & . & . & . & 1 & . & 0\\ . & . & . & . & . & . & . & 1& 0\\ 0 & . & . & . & . & . & . & 0 & 1\\ \end{pmatrix} [/mm]

[mm] 1/\lambda [/mm] ist an position l,l in der matrix

und das is die einzige matrix schreibweise die ich kenne



        
Bezug
Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 09:21 Mi 13.02.2008
Autor: angela.h.b.


> Aufgabe 35: (2 + 2 Punkte)
>  Seien j, l, n [mm]\in \IN[/mm] mit 1 [mm]\le[/mm] j, l [mm]\le[/mm] n, [mm]\lambda \in[/mm]  
> K. Betrachten Sie im [mm]K^{n,n}[/mm] die Elementarmatrizen
>  [mm]F_j_l(\lambda)[/mm] := [mm]I_n +\lambda \vartriangle_j_l,[/mm] j [mm]\not=[/mm]
> l; [mm]F_j(\lambda) =In+(\lambda[/mm] -1) [mm]\vartriangle_j_j[/mm] , [mm]\lambda \not=[/mm]
> 0.
>  Zeigen Sie:
>  1. Für j [mm]\not=[/mm] l, [mm]\lambda \not=[/mm] 0 gilt: [mm]F_j_l(\lambda)[/mm] =
> [mm]F_l(1/ \lambda) F_j_l(1) F_l(\lambda);[/mm]
>  
> 2. Für j [mm]\not=[/mm] l,  [mm]\lambda,[/mm] μ [mm]\in[/mm] K gilt:
> [mm]F_j_l(\lambda) F_j_l([/mm] μ) = [mm]F_j_l(\lambda+[/mm] μ).
>  Hi , also  ich hab die aufgabe sch0on abgegeben und hab
> das ganze  mit der Matrix schreibweise gemacht und bekamm 2
> von 4 punkten.
>  
> kommentar war
>
> die Matrix schreibweise ist Bei dieser Aufgabe sehr
> unpreziese.
>  
> wie kann mand as denn anders schreiben?
>  kann mir wer das zeigen
>  
>
> ich hab das Mit Matrizen gemacht
>
> [mm]F_l[/mm] (1/ [mm]\lambda)=[/mm]
>  [mm]\begin{pmatrix} 1 & 0 & . & . & . & . & . & . & 0\\ 0 & 1 & . & . & . & . & . & . & 0\\ . & . & 1 & . & . & . & . & . & 0\\ . & . & . & 1 & . & . & . & . & 0\\ . & . & . & . & 1/\lambda & . & . & . & 0\\ . & . & . & . & . & 1 & . & . & 0\\ . & . & . & . & . & . & 1 & . & 0\\ . & . & . & . & . & . & . & 1& 0\\ 0 & . & . & . & . & . & . & 0 & 1\\ \end{pmatrix}[/mm]
>  
> [mm]1/\lambda[/mm] ist an position l,l in der matrix
>  
> und das is die einzige matrix schreibweise die ich kenne

Hallo,

Deine Schreibweise ist insofern unpräzise, als es sich in der Aufgabe um nxn-Matrizen handelt, Du aber mit 9x9-Matrizen arbeitest.

Zwar erklärst Du die Delta-Matrizen nicht, aber meine hellseherischen Fähigkeiten sagen mir, daß [mm] \vartriangle_j_l [/mm] überall die Einträge 0 hat, außer in der Position ij, wo der Eintrag =1 ist.

Deine Matrix [mm] F_l(\bruch{1}{\lambda}) [/mm] müßte also an der Position ll den Eintrag [mm] \bruch{1}{\lambda} [/mm] haben und nicht, wie bei Dir, an der Position 5,5.

Diese Dinge sind es, die der Korrektor mit "unpräzise" meint. Wenn Du den Beweis so führst, zeigst Du im Grunde nur beispielhaft  die Gültigkeit für n=9 und l=5.

Ich nehme mal an, daß Du hiermit arbeiten solltest:

[mm] I_n_n:=(e_i_k) [/mm]   mit [mm] e_i_k:=\begin{cases} 1, & \mbox{für } i=k \mbox{ } \\ 0, & \mbox{für } i\not=k \mbox{ } \end{cases}, [/mm]   i,k [mm] \in \{1,2,...,n\}, [/mm]

[mm] \vartriangle_j_l:=(d_i_k) [/mm]   mit [mm] d_i_k:=\begin{cases} 1, & \mbox{für } (i,k)=(j,l) \mbox{ } \\ 0, & \mbox{sonst } \mbox{ } \end{cases}, [/mm]   i,k [mm] \in \{1,2,...,n\}. [/mm]

Und dann die Additionen und Produkte ebenfalls elementweise.

Gruß v. Angela










>  
>  


Bezug
                
Bezug
Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Mi 13.02.2008
Autor: neo-killer

$ [mm] F_l [/mm] $ (1/ $ [mm] \lambda)= [/mm] $
>  $ [mm] \begin{pmatrix} 1 & 0 & . & . & . & . & . & . & 0\\ 0 & . & . & . & . & . & . & . & 0\\ . & . & . & . & . & . & . & . & .\\ . & . & . & . & . & . & . & . & .\\ . & . & . & . & 1/\lambda & . & . & . & .\\ . & . & . & . & . & . & . & . & .\\ . & . & . & . & . & . & . & . & .\\ . & . & . & . & . & . & . & .& 0\\ 0 & . & . & . & . & . & . & 0 & 1\\ \end{pmatrix} [/mm] $
>  
> $ [mm] 1/\lambda [/mm] $ ist an position l,l in der matrix


so sollte die matrix auch aussehen
die punkte sind damit das fortlaufen ist und icht n=9 sondern n [mm] \in \IN [/mm]
aber deine antwort is das was ich gesucht hab glaub ich mal.

Und danke Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de