www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrix = Produkt
Matrix = Produkt < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix = Produkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Do 24.01.2013
Autor: Aguero

Aufgabe
Zeigen Sie:

det [mm] \pmat{ 1 & 1 & 1 & ... & 1 \\ x_{1} & x_{2} & x_{3} & ... & x_{n} \\ x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & ... & x_{n}^{2} \\ ... & ... & ... & ... & ... \\ x_{1}^{n-1} & x_{2}^{n-1} & x_{3}^{n-1} & ... & x_{n}^{n-1} } [/mm] = [mm] \produkt_{j
Tipp: Subtrahieren sie das [mm] x_{1} [/mm] - fache der vorletzten von der letzten Zeile, dann das [mm] x_{1} [/mm] - fache der drittletzten von der vorletzten Zeile usw. Verwenden sie vollständige Induktion.

soll ich da jetzt ne fette rechnung aufschreiben oder wie gehe ich da am besten vor? die induktion in algebra liegt mir überhaupt nicht, ich kann es zu der induktion aus analysis überhaupt nicht einordnen.

        
Bezug
Matrix = Produkt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Do 24.01.2013
Autor: schachuzipus

Hallo,


> Zeigen Sie:
>  
> det [mm]\pmat{ 1 & 1 & 1 & ... & 1 \\ x_{1} & x_{2} & x_{3} & ... & x_{n} \\ x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & ... & x_{n}^{2} \\ ... & ... & ... & ... & ... \\ x_{1}^{n-1} & x_{2}^{n-1} & x_{3}^{n-1} & ... & x_{n}^{n-1} }[/mm]  = [mm]\produkt_{j
>  
> Tipp: Subtrahieren sie das [mm]x_{1}[/mm] - fache der vorletzten von
> der letzten Zeile, dann das [mm]x_{1}[/mm] - fache der drittletzten
> von der vorletzten Zeile usw. Verwenden sie vollständige
> Induktion.
>  soll ich da jetzt ne fette rechnung aufschreiben oder wie
> gehe ich da am besten vor?

Jo, per Induktion nach der "Größe" der Matrix - wie gefordert. So "fett" ist die Rechnung nicht.

Allein im Induktionsschritt ist etwas zu tun.

Versuch's doch einfach mal. Wenn du irgendwo stecken bleibst, frage nach (mit Rechnung bis zu der fraglichen Stelle)

> die induktion in algebra liegt
> mir überhaupt nicht, ich kann es zu der induktion aus
> analysis überhaupt nicht einordnen.

Im Induktionsanfang [mm]n=1[/mm] hast du eine [mm]1\times 1[/mm]-Matrix, also [mm]A=\pmat{1}[/mm]

Dann hast du in der IV ein bel., aber festes [mm]n[/mm], also eine [mm]n\times n[/mm]-Matrix, für die die Aussage gilt.

Dann zeige im eigentlichen Induktionsschritt, dass sie auch für eine [mm](n+1)\times (n+1)[/mm]-Matrix gilt...

Soviel zur Struktur.

Fülle du das mit Leben!

Gruß

schachuzipus


Bezug
        
Bezug
Matrix = Produkt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Do 24.01.2013
Autor: Stueckchen

Hey, übe am Besten die Induktion in LinA an einem einfacheren Beispiel nochmal (z.B.: [mm] A=(a_i_j)_i_,_j_=_1_,_._._._,_n a_i_j [/mm] = 0  [mm] \forall [/mm] j < i [mm] \Rightarrow [/mm] det (A) = [mm] \produkt_{i=1}^{n} a_i_i [/mm] ).
Die Aufgabe ist auch bissle tricky glaube ich. Mit dem angegebenen Tipp bekommt man nen Ansatz, aber muss man die Entwicklung dann auch noch öfter durchführen?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de