www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrix mit detA=1
Matrix mit detA=1 < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix mit detA=1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:16 Mi 03.01.2007
Autor: celeste16

Aufgabe
Gegeben seien linear unabhägige Vektoren [mm] v_{1}, v_{2}, v_{3} \in \IR^{5}. [/mm] Zeigen Sie, dass es mindestens eine Matrix A [mm] \in M_{5}(\IR) [/mm] gibt, die [mm] v_{1}, v_{2}, v_{3} [/mm] als ihre ersten drei Zeilen hat und außerdem det(A) = 1 erfüllt.

Die Matrix sieht also meiner Meinung nach so aus:
A= [mm] \pmat{ v_{11} & v_{12} & v_{13} & v_{14} & v_{15} \\ v_{21} & v_{22} & v_{23} & v_{24} & v_{25} \\ v_{31} & v_{32} & v_{33} & v_{34} & v_{35} \\ a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\ b_{1} & b_{2} & b_{3} & b_{4} & b_{5} } [/mm]

[mm] v_{1}, v_{2}, v_{3} [/mm] sind beliebige Vektoren, also muss ich a und b so finden dass immer det(A)=1 gilt.

Mein Problem ist dass ich dazu keine (funktionierende) Idee hab. Könnt ihr mir ein paar Anregungen geben?

        
Bezug
Matrix mit detA=1: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Mi 03.01.2007
Autor: Leopold_Gast

Man soll ja eigentlich die Lösung nicht sofort verraten. Aber bei so einer Aufgabe ist es schwierig, lediglich einen Tip zu geben, ohne zahlreiche Nachfragen beantworten zu müssen. Deshalb erlaube ich mir, die Lösung gleich mitzuteilen. Vielleicht führst du das ganze Prozedere einmal an einem konkreten Beispiel durch:

[mm]v_1 = (3,-2,1,0,1) \, , \ \ v_2 = (0,3,0,1,-2) \, , \ \ v_3 = (-6,1,-2,-1,1)[/mm] oder anderswie


Die 3×5-Matrix aus den drei gegebenen Zeilen hat nach Voraussetzung Maximalrang 3. Jetzt vertausche man ihre Spalten so, daß ihr linker 3×3-Bestandteil den Rang 3 hat, mit anderen Worten eine invertierbare Matrix mit einer Determinante [mm]\delta \neq 0[/mm] bildet (das geht wegen Spaltenrang=Zeilenrang). Unterhalb dieser 3×3-Matrix hänge man eine 2×3-Matrix aus lauter Nullen an. Und rechts neben dieser bringe man die Matrix

[mm]\begin{pmatrix} \delta^{-1} & 0 \\ 0 & \pm 1 \end{pmatrix}[/mm]

an. Man wähle das Pluszeichen, wenn es am Anfang geradzahlige viele, und das Minuszeichen, wenn es ungeradzahlige viele Spaltenvertauschungen waren. Die so entstandene 5×5-Matrix hat jetzt nach einer bekannten Regel die Determinante [mm]\pm 1[/mm]. Jetzt mache man die anfänglichen Spaltenvertauschungen rückgängig. Dann hat man die ersten drei Zeilen wieder in ihren Urzustand zurückversetzt, und die gesamte Matrix hat die Determinante 1.

Bezug
                
Bezug
Matrix mit detA=1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Mi 03.01.2007
Autor: celeste16

erst einmal danke für deine ausführliche erklärung.
ich bin das jetzt mal durchgegangen und habe auch noch ein anderes Beispiel vür die 3 Vektoren genommen und nachgesehen ob's klappt - hat's nur leider auch nach mehrmaligen nach rechenfehlern schauen nicht.

das zum einen, und zum anderen bin ich mir nicht sicher ob diese Lösung mit der inversen Determinante so in der Art "die Beste" ist (mir ist schon klar dass ich vermutlich irgendwo mal die Determinante brauche, aber es handelt sich ja hier um die der 3x3 Matrize - wenn ich das richtig verstanden habe)

aber wie gesagt kommt die rechnung bei mir an sich nicht hin (ich hab detA=0) rausbekommen.


Bezug
                        
Bezug
Matrix mit detA=1: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 Mi 03.01.2007
Autor: Leopold_Gast

[mm]\begin{pmatrix} 3 & -2 & 1 & 0 & 1 \\ 0 & 3 & 0 & 1 & -2 \\ -6 & 1 & -2 & -1 & 1 \end{pmatrix}[/mm]

Die erste und dritte Spalte sind linear abhängig. Tausch von Spalte 1 und Spalte 5:

[mm]\begin{pmatrix} 1 & -2 & 1 & 0 & 3 \\ -2 & 3 & 0 & 1 & 0 \\ 1 & 1 & -2 & -1 & -6 \end{pmatrix}[/mm]

Die ersten drei Spalten sind jetzt linear unabhängig. Determinante der 3×3-Matrix ist [mm]-3[/mm].

Nach dem beschriebenen Verfahren wird ergänzt:

[mm]\begin{pmatrix} 1 & -2 & 1 & 0 & 3 \\ -2 & 3 & 0 & 1 & 0 \\ 1 & 1 & -2 & -1 & -6 \\ 0 & 0 & 0 & - \frac{1}{3} & 0 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}[/mm]

Diese Matrix hat die Determinante [mm]-1[/mm].

Rücktausch von Spalte 1 und Spalte 5:

[mm]\begin{pmatrix} 3 & -2 & 1 & 0 & 1 \\ 0 & 3 & 0 & 1 & -2 \\ -6 & 1 & -2 & -1 & 1 \\ 0 & 0 & 0 & - \frac{1}{3} & 0 \\ -1 & 0 & 0 & 0 & 0 \end{pmatrix}[/mm]

Diese Matrix hat die Determinante [mm]1[/mm].

Das funktioniert also bestens.

Bezug
                                
Bezug
Matrix mit detA=1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Mi 03.01.2007
Autor: celeste16

das system war mir klar, aus irgendeinem grund war bei mir die -1 woanders.

auf jedenfall hat's jetzt mit meinem Beispiel geklappt.

wenn ich das jetzt richtig verstanden habe ist die allgemeine Formulierung folgende:

A= [mm] \pmat{ v_{11} & v_{12} & v_{13} & v_{14} & v_{15} \\ v_{21} & v_{22} & v_{23} & v_{24} & v_{25} \\ v_{31} & v_{32} & v_{33} & v_{34} & v_{35} \\ 0 & 0 & 0 & \delta^{-1} & 0 \\ -1 & 0 & 0 & 0 & 0 } [/mm]

mit [mm] \delta [/mm] = det [mm] \pmat{ v_{15} & v_{12} & v_{13} \\ v_{25} & v_{22} & v_{23} \\ v_{35} & v_{32} & v_{33} } [/mm]

hab ich das jetzt richitg aufgefasst?

Bezug
                                        
Bezug
Matrix mit detA=1: Antwort
Status: (Antwort) fertig Status 
Datum: 21:25 Mi 03.01.2007
Autor: Leopold_Gast

Bei diesem Beispiel war das so. Bei einem anderen kann das wieder anders sein. Lies dir noch einmal genau meinen ersten Beitrag durch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de