www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Matrixberechnung
Matrixberechnung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixberechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 11:27 Do 06.01.2005
Autor: Schlomi

Hallo..

da mein Abitur schon ne Weile her ist, ich aber beruflich jetzt wieder stärker mit dem Mathezeugs "kontaminiert" werde, brauch ich mal eure Hilfe. Ich denke mal für Cracks kein wirkliches Problem

A =  [mm] \vektor{x \\ y} [/mm] *   [mm] \pmat{ 1 & -2 \\ 3 & 4 } [/mm]
Wie löse ich das am elegantesten?! Keine Lösung. Der Algorithmus ist ausreichend.

(da ich die Matrix nicht korrekt darstellen konnte
1 = cos [mm] \alpha [/mm]
2 = - sin [mm] \alpha [/mm]
3 = sin [mm] \alpha [/mm]
4 = cos [mm] \alpha [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Matrixberechnung: Antwort(en)
Status: (Antwort) fertig Status 
Datum: 13:01 Do 06.01.2005
Autor: e.kandrai

So, wie du's hingeschrieben hast, geht die Multiplikation gar nicht.

Entweder transponierst du den Vektor: [mm](x\ ,\ y)^T \cdot \pmat{1 & -2 \\ 3 & 4}[/mm], oder du vertauschst die Reihenfolge der Multiplikation: [mm]\pmat{1 & -2 \\ 3 & 4} \cdot \vektor{x \\ y}[/mm].
Vorsicht: du hast "2" als [mm]-sin(\alpha)[/mm] definiert, also sollte die Matrix wahrscheinlich doch eher so aussehen: [mm]\pmat{1 & 2 \\ 3 & 4}[/mm], oder?

Da das ganze doch sehr nach ner Drehmatrix aussieht, gilt wohl mein zweiter Vorschlag: Reihenfolge der Multiplikation vertauschen.
So wird dann der Vektor [mm]\vektor{x \\ y}[/mm] um den Winkel [mm]\alpha[/mm] gedreht.

[mm]\pmat{1 & 2 \\ 3 & 4} \cdot \vektor{x \\ y}\ =\ \vektor{1 \cdot x + 2 \cdot y \\ 3 \cdot x + 4 \cdot y}[/mm].

Oder in der sin-cos-Form: [mm]\pmat{cos(\alpha) & -sin(\alpha) \\ sin(\alpha) & cos(\alpha)} \cdot \vektor{x \\ y}\ =\ \vektor{x \cdot cos(\alpha) - y \cdot sin(\alpha) \\ x \cdot sin(\alpha) + y \cdot cos(\alpha)}[/mm]

Der Vektor (bzw. die erste Spalte der zweiten Matrix, was hier auf's selbe hinausläuft) wird über die Matrix "gezogen", und um 90° nach links gekippt, so dass die auf der ersten Matrix "liegt". Jetzt "rutscht" sie zeilenweise durch die erste Matrix durch. Und was dabei passiert (bzw. was gerechnet werden muss), kannst du dir ja aus meiner Rechnung erschliessen.

Oder "richtig allgemein", in mathematischer Sprache: als [mm](n \times m)[/mm]-Matrix wird eine Matrix mit n Zeilen und m Spalten bezeichnet (Zeilen zuerst, Spalten später).
Eine Multiplikation ist nur dann möglich, wenn die Anschlusszahlen stimmen, d.h. wenn [mm](i \times j) \cdot (j \times k)[/mm] ist (wegen dem j: Spaltenzahl der ersten = Zeilenzahl der zweiten Matrix). Das Ergebnis ist dann eine [mm](i \times k)[/mm]-Matrix.
Formel: [mm]c_{ik}=\summe_{j=1}^{n} {(a_{ij} \cdot b_{jk})}[/mm] für das Produkt [mm]A \cdot B = C[/mm] mit [mm]A=(a_{ij})[/mm], [mm]B=(b_{jk})[/mm].

Ach ja, ein Vektor ist auch nur ein Spezialfall einer Matrix, nämlich eine [mm](n \times 1)[/mm]-Matrix: n Zeilen, 1 Spalte.

Bezug
                
Bezug
Matrixberechnung: Frage
Status: (Frage) beantwortet Status 
Datum: 13:42 Do 06.01.2005
Autor: Schlomi

Löse ich diesen Ausdruck:

[mm] \pmat{ x * cos \alpha - y * sin \alpha \\ x * sin \alpha + y * cos \alpha } [/mm]

indem ich einfach die x und y koordinaten einsetze?! d.h. den x - wert in die obere Zeile und den y - wert in die zweite Zeile?

Das mit der Formel die die mir gepostet hast hab ich nicht verstanden! Oder gehört die garnicht zum Lösungsweg dazu?

Bezug
                        
Bezug
Matrixberechnung: neue Antwort (anderer Link)
Status: (Antwort) fertig Status 
Datum: 13:57 Do 06.01.2005
Autor: Julius

Hallo!

> Löse ich diesen Ausdruck:
>  
> [mm]\pmat{ x * cos \alpha - y * sin \alpha \\ x * sin \alpha + y * cos \alpha } [/mm]
>  
>
> indem ich einfach die x und y koordinaten einsetze?! d.h.
> den x - wert in die obere Zeile und den y - wert in die
> zweite Zeile?

Einen Term kann man nicht lösen, man kann nur Gleichungen lösen. Du meinst vermutlich: Wie setze ich einen Vektor [mm] $\begin{pmatrix} x \\ y \end{pmatrix}$ [/mm] jetzt ein? Ja, das geht so, dass du einfach die Komponenten einsetzt in die beiden Koordinatenabbildungen.

> Das mit der Formel die die mir gepostet hast hab ich nicht
> verstanden! Oder gehört die garnicht zum Lösungsweg dazu?

E.Kandrai wollte dir die []Matrizenmultiplikation erklären. Da ein Vektor eine spezielle Matrix ist, kann man dies hier tun.

Wichtig für dich ist einfach nur, dies am Beispiel einer $(2 [mm] \times [/mm] 2)$-Matrix und einem zweidimensionalen Vektor nachzuvollziehen:

[mm] $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\x_2 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} a_{11} \cdot x_1 + a_{12} \cdot x_2 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 \end{pmatrix}$. [/mm]

Liebe Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de