www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Matrixexponentialfunktion
Matrixexponentialfunktion < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixexponentialfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Di 20.05.2008
Autor: vicky

Aufgabe
Berechne exp(A,t): [mm] A=\pmat{ 1 & 1 \\ -1 & 1 }. [/mm]

Hallo,

ich habe mir folgende Gedanken gemacht: A ist gegeben, dann bestimme ich die Jordanform, so dass [mm] A=SJS^{-1}. [/mm] J = Diagonalmatrix, da alle EW verschieden also [mm] J=\pmat{ 1+i & 0 \\ 0 & 1-i } [/mm] (über char. Polynom). nun berechne S. Das habe ich mit Hilfe von Matlab getan, weil ich absolut nicht weiß, wie ich dass berechnen soll. Raus kommt auf jeden Fall [mm] S=\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}. [/mm] Daher auch meine erste Frage, wie kommt man auf S? Habe die EV zu den EW berechnet und komme auf [mm] \vektor{-i \\ 1} [/mm] und [mm] \vektor{i \\ 1} [/mm] was ja dem S nicht ganz unnahe ist, trotzdem weiß ich nicht wie das [mm] \bruch{1}{2} [/mm] da in die Rechnung kommt.

[mm] exp(\pmat{ 1 & 1 \\ -1 & 1 }*t)=\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}*exp(\pmat{ 1+i & 0 \\ 0 & 1-i }*t)*\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}^{-1} [/mm]
[mm] =\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}*(exp\pmat{ t+it & 0 \\ 0 & t-it })*\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}^{-1} [/mm]
[mm] =\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}*(\pmat{ exp(t+it) & 0 \\ 0 & exp(t-it) })*\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}^{-1} [/mm]
[mm] =\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}*(\pmat{ exp(t)exp(it) & 0 \\ 0 & exp(t)exp(-it) })*\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}^{-1} [/mm]
[mm] =exp(t)\pmat{ cos t + i sin t & sin t \\ -sin t & cos t - i sin t } [/mm]

Kann es sein, dass es so ungefähr hinkommt? Ist das dann letzlich die Matrixexponentialfkt. oder muß man nochmehr zeigen/berechnen?

Besten Gruß
vicky

        
Bezug
Matrixexponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 01:43 Do 22.05.2008
Autor: MatthiasKr

Hi,
> Berechne exp(A,t): [mm]A=\pmat{ 1 & 1 \\ -1 & 1 }.[/mm]
>  Hallo,
>  
> ich habe mir folgende Gedanken gemacht: A ist gegeben, dann
> bestimme ich die Jordanform, so dass [mm]A=SJS^{-1}.[/mm] J =
> Diagonalmatrix, da alle EW verschieden also [mm]J=\pmat{ 1+i & 0 \\ 0 & 1-i }[/mm]
> (über char. Polynom). nun berechne S. Das habe ich mit
> Hilfe von Matlab getan, weil ich absolut nicht weiß, wie
> ich dass berechnen soll.

Normalerweise stehen in der Matrix S einfach die Eigenvektoren (zumindest wenn die matrix diagonalisierbar ist).

> Raus kommt auf jeden Fall [mm]S=\pmat{ \bruch{1}{2} & \bruch{1}{2} >\\ \bruch{1}{2}i& -\bruch{1}{2}i}.[/mm]
> Daher auch meine erste Frage, wie kommt man auf S? Habe die
> EV zu den EW berechnet und komme auf [mm]\vektor{-i \\ 1}[/mm] und
> [mm]\vektor{i \\ 1}[/mm] was ja dem S nicht ganz unnahe ist,

deine EVen sehen fuer mich richtig aus

> trotzdem weiß ich nicht wie das [mm]\bruch{1}{2}[/mm] da in die
> Rechnung kommt.
>  

ueber den faktor 1/2 wuerde ich mir keinen kopf machen, skalierung mit konstanten ist immer moeglich (wenn mich nicht alles taeuscht). warum die EVen von matlab quasi 'umgedreht' sind, verstehe ich allerdings auch nicht. schau noch mal nach, ob du alles korrekt gerechnet/eingegeben hast.

> [mm]exp(\pmat{ 1 & 1 \\ -1 & 1 }*t)=\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}*exp(\pmat{ 1+i & 0 \\ 0 & 1-i }*t)*\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}^{-1}[/mm]
>  
> [mm]=\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}*(exp\pmat{ t+it & 0 \\ 0 & t-it })*\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}^{-1}[/mm]
>  
> [mm]=\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}*(\pmat{ exp(t+it) & 0 \\ 0 & exp(t-it) })*\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}^{-1}[/mm]
>  
> [mm]=\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}*(\pmat{ exp(t)exp(it) & 0 \\ 0 & exp(t)exp(-it) })*\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ \bruch{1}{2}i& -\bruch{1}{2}i}^{-1}[/mm]
>  
> [mm]=exp(t)\pmat{ cos t + i sin t & sin t \\ -sin t & cos t - i sin t }[/mm]
>  
> Kann es sein, dass es so ungefähr hinkommt? Ist das dann
> letzlich die Matrixexponentialfkt. oder muß man nochmehr
> zeigen/berechnen?

deinen letzten schritt kann ich so mit blossem auge nicht 100% pruefen, sieht aber im prinzip richtig aus.

gruss
matthias

>  
> Besten Gruß
>  vicky


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de