Matrixnorm < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:23 Sa 06.11.2004 | Autor: | Wurzelpi |
Hallo zusammen!
Ich habe eine Frage.
Warum wird die Frobeniusnorm nicht durch eine Vektornorm induziert?
Ich habe bislang überprüft, dass die Frobeniusnorm überhaupt eine Norm ist.
Ferner ist sie auch noch submultiplikativ -- da hätte ich evtl. einen Widerspruch erwartet, den es aber nicht gab.
Wer kann mir das erklären (beweisen)?
|
|
|
|
Hallo Wurzelpi,
Könntest Du vielleicht noch schreiben was die Frobeniusnorm überhaupt ist? Was meinst Du mit submultiplikativ? Ich kann mit diesen Begriffen leider nichts anfangen.
gruß
mathemaduenn
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:51 Sa 06.11.2004 | Autor: | Stefan |
Hallo Wurzelpi!
Die Frobenius-Norm einer Matrix $A [mm] \in \IR^{m \times n}$ [/mm] ist definiert durch:
[mm] $\Vert [/mm] A [mm] \Vert_F [/mm] := [mm] \sqrt{ \sum\limits_{i=1}^m \sum\limits_{j=1}^n \vert a_{ij} \vert^2}$.
[/mm]
Die Frobenius-Norm ist mit der [mm] $l^2$-Norm [/mm] verträglich, d.h. es gilt:
[mm] $\Vert [/mm] Ax [mm] \Vert_2 \le \Vert A\Vert_F \cdot \Vert [/mm] x [mm] \Vert_2$
[/mm]
und sie ist auch submultiplikativ, d.h. für Matrizen $A [mm] \in \IR^{m \times n}$ [/mm] und $B [mm] \in \IR^{n \times p}$ [/mm] gilt:
[mm] $\Vert [/mm] AB [mm] \Vert_F \le \Vert A\Vert_F \cdot \Vert [/mm] B [mm] \Vert_F$.
[/mm]
Dennoch wird die Frobenius-Norm i.A. von keiner Vektornorm [mm] $\Vert \cdot \Vert$ [/mm] induziert, denn ansonsten müsste speziell im Falle $n=m$ für die Einheitsmatrix $I [mm] \in \IR^{n \times n}$ [/mm] gelten:
[mm] $\Vert [/mm] I [mm] \Vert_F [/mm] = [mm] \sup\limits_{x \in \IR^n,\, x \ne 0} \frac{\Vert Ix \Vert}{\Vert x \Vert} [/mm] = [mm] \sup\limits_{x \in \IR^n,\, x \ne 0} \frac{\Vert x \Vert}{\Vert x \Vert} [/mm] = [mm] \sup\limits_{x \in \IR^n,\, x \ne 0} [/mm] 1 = 1$.
Stattdessen gilt aber:
[mm] $\Vert [/mm] I [mm] \Vert_F [/mm] = [mm] \sqrt{n}$,
[/mm]
was im Falle $n>1$ einen Widerspruch darstellt.
Liebe Grüße
Stefan
|
|
|
|