www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Matrizen-Gleichung
Matrizen-Gleichung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen-Gleichung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 15:06 Fr 02.12.2005
Autor: monk1985

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Ich komme leider mit der folgenden Aufgabe nicht weiter.
Meine Idee ist , dass man das X auf eine Seite bekommt, aber mit welcher Zahl/Variablen?

1. Lösen Sie die Matrizengleichung AX=B

A=  [mm] \pmat{ 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4} [/mm]

B=  [mm] \pmat{ 0 & 1 & 2 \\ -1 & 1 & 0 \\ 2 & 3 & 1 } [/mm]


        
Bezug
Matrizen-Gleichung: Hinweis
Status: (Antwort) fertig Status 
Datum: 21:15 Fr 02.12.2005
Autor: MathePower

Hallo monk1985,

[willkommenmr]

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo!
>  
> Ich komme leider mit der folgenden Aufgabe nicht weiter.
>  Meine Idee ist , dass man das X auf eine Seite bekommt,
> aber mit welcher Zahl/Variablen?
>  
> 1. Lösen Sie die Matrizengleichung AX=B
>  
> A=  [mm]\pmat{ 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4}[/mm]
>  
> B=  [mm]\pmat{ 0 & 1 & 2 \\ -1 & 1 & 0 \\ 2 & 3 & 1 }[/mm]
>  

da musst Du mit [mm]A^{-1}[/mm] von links multiplizieren.

Gruß
MathePower  

Bezug
                
Bezug
Matrizen-Gleichung: Rückfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:26 Sa 03.12.2005
Autor: monk1985

Danke für den Hinweis!

Kann mir vielleicht jemand die Endlösung für die Aufgabe geben, damit ich die mit meiner vergleichen kann?

Danke



Bezug
                        
Bezug
Matrizen-Gleichung: Dein Ergebnis?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:29 Sa 03.12.2005
Autor: Loddar

Guten Morgen Monk!


Andersherum wird ein Schuh daraus ;-) ... poste Dein Ergebnis, und es wird dann hier kontrolliert.


Gruß
Loddar


Bezug
                                
Bezug
Matrizen-Gleichung: Meine Lösung
Status: (Frage) beantwortet Status 
Datum: 14:48 Sa 03.12.2005
Autor: monk1985

Hi!

Meine Lösung ist

X=  [mm] \pmat{ -3 & -5 & 11 \\ -1 & 0 & -2 \\ 2 & 2 & -1} [/mm]

Ist die richtig?

Bezug
                                        
Bezug
Matrizen-Gleichung: Tipp
Status: (Antwort) fertig Status 
Datum: 23:31 Sa 03.12.2005
Autor: Mehmis

Hallo,
hast du schon die Inverse Matrix mit der ursrunglichen Matrix multipliziert ? Dann sollte die Einheitsmatrix herauskommen, $$ A * [mm] A^{-1} \stackrel{!}{=} [/mm] E$$

Viele Grüße
Mehmet

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de