www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Matrizen
Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:21 Do 08.12.2005
Autor: Willi

Hey Leute,

ich hab folgende Aufgabe und weiß nicht so genau ob ich die FRagestellung so ganz richtig verstanden hab. Bräuchte also mal kurz ne kleine Hilfestellung.

Aufgabe:
Sei K ein Körper, n [mm] \in \IN [/mm] und A = (aij) [mm] \in M(n\timesn,K) [/mm] die Matrix mit
[mm] aij=\begin{cases} 1, & \mbox{für } j = i+1 \\ 0, & \mbox{für } sonst \end{cases} [/mm]
Berechnen Sie A² und A³.

Hab ich das jetzt richtig verstanden, dass die Matrix folgendermaßen aussieht:

[mm] \pmat{ o & 0 & ... & 0 \\ 0 & 1 & .... & 0 \\ 0 & 0 & 1 & ... & 0 \\ ... & ... \\ 0 & 0 & ... & 0 } [/mm] ?

Bitte um dringende Hilfe. DANKE.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 02:36 Fr 09.12.2005
Autor: R4ph43l


> Hey Leute,

Hallo!

> Hab ich das jetzt richtig verstanden, dass die Matrix
> folgendermaßen aussieht:
>  
> [mm]\pmat{ o & 0 & ... & 0 \\ 0 & 1 & .... & 0 \\ 0 & 0 & 1 & ... & 0 \\ ... & ... \\ 0 & 0 & ... & 0 }[/mm]
> ?

[notok] Leider falsch, die Matrix ist eine Diagonalmatrix mit Einsen über der Mitteldiagonale, d.h.
A = [mm] \pmat{ 0 & 1 & 0 & ... & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & ... & \ddots & \ddots & \vdots \\ \vdots & ... & ... & 0 & 1 \\ 0 & ... & ... & ... & 0 } [/mm]
Ist relativ leicht zu überlegen, wenn du für i einfach die Zeile einsetzt in der du bist und dann die Spalte j = i+1 suchst und dort eine 1 einsetzt und den Rest mit Nullen füllst.

Die Berechnung von A² und A³ sollte eigentlich einfach sein.

Bezug
                
Bezug
Matrizen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:49 Fr 09.12.2005
Autor: Willi

Hey Leute,

Also, die Berechnung von A² und A³ war leicht, dabei hat sich dann nur die "Einserdiagonale" um eine bzw um zwei Spalten nach rechts verschoben.

Meine Frage ist jetzt aber folgende: Ich soll eine Vermutung für den WErt von A ^{k}: = A [mm] \*A \* \* \*A [/mm] (k Faktoren) mit k [mm] \in\IN [/mm] formuliern und diese mittels vollständiger Induktion nach k beweisen.

Auch hier ist der Induktionsbeweis nicht das Problem, lediglich wie ich die Vermutung (dass sich die "Einserdiagonale" spaltenweise immer weiter nach rechts verschiebt, oder ist das doch eine falsche Vermutung?) mathematisch formuliere, um die Induktion ansetzen zu können.

Bitte nochmals um Hilfe. DANKE.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Bezug
                        
Bezug
Matrizen: Formulierung
Status: (Antwort) fertig Status 
Datum: 15:57 Fr 09.12.2005
Autor: banachella

Hallo!

Deine Vermutung ist schon richtig!
Die richtige Behauptung wäre wohl
$ [mm] a^{(k)}_{ij}=\begin{cases} 1, & \mbox{für } j = i+k \\ 0, & \mbox{für } sonst \end{cases} [/mm] $,
wobei [mm] $A^k=\left(a^{(k)}_{ij}\right)_{1\le i,j\le n}$... [/mm]

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de