Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:12 Mi 28.12.2005 | Autor: | oeli1985 |
Aufgabe | Eine reelle (3x3)-Matrix A=( [mm] a_{ij}) [/mm] heißt ein magisches (3x3)-Quadrat, wenn die drei Zeilensummen [mm] a_{k1}+ a_{k2}+ a_{k3}, [/mm] die drei Spaltensummen [mm] a_{1k}+ a_{2k}+ a_{3k} [/mm] (k [mm] \in [/mm] {1,2,3}), sowie die beiden Diagonalsummen [mm] a_{11}+ a_{22}+ a_{33} [/mm] und [mm] a_{13}+ a_{22}+ a_{31} [/mm] alle miteinander übereinstimmen.
Untersuchen sie die Menge der magischen (3x3)-Quadrate mit Hilfe der Begriffe und Ergebnisse der Linearen Algebra. |
Hallo zusammen,
also die Aufgabenstellung kennt ihr ja jetzt. Zu verstehen, was ein magisches Quadrat ist war auch für mich nicht wirklich schwer. Mir geht es jetzt erstmal einfach nur darum, dass ich nichts vergesse bei der Behandlung dieser Aufgabe.
D.h. ich würde mich freuen, wenn mir jemand sagen könnte, welche Begriffe und Ergebnisse wohl gemeint sind. Als Info dazu: Ich studiere gerade im ersten Semester Mathe in Köln und besuche dementsprechen die Vorlesung Lineare Algebra I.
Mein Problem ist einfach, dass ich dazu tendiere allen möglichen Sch... zu untersuchen, obwohl es oft Schwachsinn ist und ich mir das ersparen möchte. Also kann mir vielleicht jemand aus Erfahrung sagen, welche Untersuchungen bei solch einer Aufgabe meist verlangt sind.
Danke schon mal im voraus. Gruß, Patrick
|
|
|
|
Wie wäre es mit Folgendem:
1. Die Menge [mm]\mathfrak{M}[/mm] der reellen magischen 3×3-Quadrate ist ein Untervektorraum des [mm]\mathbb{R}^{3 \times 3}[/mm].
2. Ist [mm]s[/mm] der Summenwert der Zeilen bzw. Spalten bzw. Diagonalen eines [mm]M \in \mathfrak{M}[/mm], so gilt für das Element im Schnitt der Diagonalen: [mm]m_{22} = \frac{1}{3} s[/mm].
3. Zeige: [mm]\operatorname{dim} \mathfrak{M} = 3[/mm]. Gib eine möglichst einfache Basis aus ganzzahligen Matrizen an.
4. Bestimme alle magischen Quadrate, in denen jede der Zahlen 1,2,3,4,5,6,7,8,9 genau einmal vorkommt. Welche Darstellungen besitzen sie in der Basis aus 3.?
1. ist reine Routine. Die andern kann man auch mit Routine bewältigen. Dann kann die Rechnung allerdings umfangreich werden. Besser ist es daher, jeweils nach einer cleveren Idee zu suchen.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:04 Do 29.12.2005 | Autor: | Lavanya |
Hallo ihr lieben,
Ich habe mir gerade den Artikel durch gelesen. Da bin ich mir aber noch etwas unsicher.
Reicht es denn, wenn man diese 4 Punkte bearbeitet? Wenn nicht koenntet ihr mir dann nooch sagen, was ich noch untersuchen muss?
Gruss Lavanya
|
|
|
|
|
Wenn es darum geht, sich weitere Aufgaben dazu auszudenken, da fallen mir gleich "tausend" ein. Zum Beispiel:
Beim Spiegeln an der Hauptdiagonalen geht ein magisches Quadrat in ein magisches Quadrat über. Diese Spiegelung kann zu einer linearen Abbildung des [mm]\mathbb{R}^{3 \times 3}[/mm] fortgesetzt werden. Welche Abbildungsmatrix bezüglich der kanonischen Basis des [mm]\mathbb{R}^{3 \times 3}[/mm] beschreibt diese Spiegelung?
Und wie sieht das Ganze aus, wenn man die Spiegelung nur auf [mm]\mathfrak{M}[/mm] bezieht und sie bezüglich der Basis aus 3. beschreibt?
|
|
|
|