www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Matrizen
Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen: nach X auflösen
Status: (Frage) beantwortet Status 
Datum: 01:03 Mi 12.01.2005
Autor: maria

Hallo. Ich habe folgende Aufgabe:

Gegeben sind die Matrizen [mm] B,C,D,E\in K^{n\times n}, [/mm] (E: Einheitsmatrix), und die Gleichung [mm] (X^{T}B)^{-1}C-D+E=0 [/mm]
Unter welchen Voraussetzungen ist diese Matrizengleichung eindeutig lösbar? Wie lautet die Lösung X?

Ich habs so probiert:
[mm] (X^{T}B)^{-1}C-D+E=0 [/mm]
[mm] (X^{T})^{-1}B^{-1}C-D+E=0 [/mm]
[mm] (X^{T})^{-1}B^{-1}C=D-E [/mm]
[mm] X^{T}(X^{T})^{-1}B^{-1}C=X^{T}(D-E) [/mm]
[mm] EB^{-1}C=X^{T}(D-E) [/mm]
[mm] B^{-1}C=X^{T}(D-E) [/mm]
[mm] BB^{-1}C=BX^{T}(D-E) [/mm]
[mm] EC=BX^{T}(D-E) [/mm]
So, jetzt fallen mir keine erlaubten Umformungen mehr ein, die das irgendwie nach X auflösen. Wie bekomm ich das T weg? Und was ist in der Aufgabenstellung mit der Bedingung gemeint? Hilfe!!!! Bitte!

        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:20 Mi 12.01.2005
Autor: sunshinenight

Habe das wie folgt gerechnet:
[mm] (X^{T}B)^{-1} [/mm] C-D+E = 0          
[mm] (X^{T}B)^{-1} [/mm] C = D-E                  | [mm] (X^{T}B) [/mm] von links multipliziert
C = [mm] (X^{T}B) [/mm] (D-E)
C = [mm] X^{T} [/mm] (B(D-E))                         | [mm] (B(D-E))^{-1} [/mm] von rechts multipl.
C [mm] (B(D-E))^{-1} [/mm] = [mm] X^{T} [/mm]

X = [mm] (C(B(D-E))^{-1})^{T} [/mm]   ist dann die Lösung

Für Eindeutigkeit muss gelten:
B und (D-E) müssen regulär sein, d.h. das Inverse zu beiden muss existieren, sonst wären die Umformungen in der Form nicht möglich!

Somit dürfte Teil 2 dann ja kein Problem mehr sein!

mfg

Bezug
                
Bezug
Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:10 Mi 12.01.2005
Autor: maria

vielen dank für die antwort. hat mir sehr gut geholfen :-) einwas ist mir aber noch nicht so ganz klar. wie du aus [mm] X^{T} [/mm] das X gemacht hast ist zwar irgendwie logisch, aber wurde das irgendwann mal bei uns in den vorlesungen so definiert? ich habe noch mal alles durchgeblättert und nix gefunden. Hmmm...also wenn du das weißt würde ich mich sehr freuen. Danke nochmal für die Antwort!!!!
Gruß, Maria

Bezug
                        
Bezug
Matrizen: Antwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Mi 12.01.2005
Autor: e.kandrai

Es gilt: [mm](A^T)^T=A[/mm], genauso wie [mm](A^{-1})^{-1}=A[/mm]. So bekommt man ein "hoch T" oder ein "hoch -1" weg.

Dieselbe Aufgabe hatte ich heute Morgen im Forum "Lineare Algebra" gefunden. Hab die Aufgabe zwar nicht durchgerechnet, aber ein paar Tipps zur Lösung gegeben. Vielleicht interessiert es dich ja: hier isses.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de