www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prozesse und Matrizen" - Matrizen
Matrizen < Prozesse+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen: Hilfe bei Matrizen
Status: (Frage) beantwortet Status 
Datum: 14:31 Mo 08.03.2010
Autor: Wake

Aufgabe
Aufgabe: Vor den Betriebsferien soll das Materiallager möglichst geräumt werden. Vorhanden son noch 162 Seitenteile, 349 Bodenpackungen und 273 Schraubensätze. Welche Bestellung muss aufgegeben werden damit das Lager möglichst geräumt wird?

Hallo,
ich komme bei der Aufgabe einfach nicht auf einen Ansatz bzw. die Lösung. Ich habe schon einiges mit meinen TC probiert aber komme nicht weiter.
Ich habe die Matrix für den Materialverbrauch:
               Amalia     Björk     Christian
Seitenteile      2          3           4
Bodenpackungen   3          6           10
Schraubensätze   3          5           7

Könnte mir jemand helfen?
Danke schonmal im vorraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Mo 08.03.2010
Autor: metalschulze

Hallo Wake,
[willkommenmr]

> Aufgabe: Vor den Betriebsferien soll das Materiallager
> möglichst geräumt werden. Vorhanden son noch 162
> Seitenteile, 349 Bodenpackungen und 273 Schraubensätze.
> Welche Bestellung muss aufgegeben werden damit das Lager
> möglichst geräumt wird?
>  Hallo,
>  ich komme bei der Aufgabe einfach nicht auf einen Ansatz
> bzw. die Lösung. Ich habe schon einiges mit meinen TC
> probiert aber komme nicht weiter.
> Ich habe die Matrix für den Materialverbrauch:
>                 Amalia     Björk     Christian
>  Seitenteile      2          3           4
> Bodenpackungen   3          6           10
> Schraubensätze   3          5           7
>  

Die Matrix die du benutzt ist erst mal richtig. Dir fehlen jetzt noch die rechte Seite der Gleichungen, und dann hast du ein lineares Gleichungssystem mit 3 Gleichungen für 3 Unbekannte (z.B Anzahl Amalia  x, Anzahl Björn y und Anzahl Christian z). Das lässt sich dann lösen (z.B. mit dem Gauss-Verfahren wenn du das schon kennst...). Nach einigem rechnen kommst du auf eine eindeutige Lösung...
viel Erfolg dabei
Gruss Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prozesse und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de