www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrizen Rang Ungleichungen
Matrizen Rang Ungleichungen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen Rang Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:36 Mi 23.01.2008
Autor: hase-hh

Aufgabe
Sei K ein Körper und A [mm] \in [/mm] M (m x n, K) sowie B [mm] \in [/mm] M (n x r, K).

1. Beweisen Sie bitte die folgenden beiden Ungleichungen.

a) rang (A*B)  [mm] \le [/mm] min(rang(A), rang(B))

b) rang(A) + rang(B) - n [mm] \le [/mm] rang (A*B)

2. Zeigen Sie, dass diese Abschätzungen scharf sind, d.h. finden Sie Beispiele von Matrizen für die

c) rang (A*B) = min(rang(A), rang(B))

d) rang(A) + rang(B) - n = rang(A*B)

gilt.    

Guten Tag,

hier fehlt mir der Ansatz. Ich habe nun schon tagelang probiert, mit Kombinationen von m, n, r; frage mich aber - außer einem Widerspruch, was das für die Aufgabe eingebracht hat???
(s.u.)

Allgemein weiß ich:

Der Rang einer Matrix ist gleich die Anzahl der unabhängigen Zeilenvektoren.

Ferner, vorausgesetzt wird A (m,n)-Matrix; B(n,n)-Matrix,

rang(A) = [mm] rang(A^T) [/mm]   Zeilenrang = Spaltenrang

rang(A) [mm] \le [/mm] min{m,n}

rang(B) = n   falls det(B) [mm] \ne [/mm] 0

rang(A*B) = rang(A)   falls det(B) [mm] \ne [/mm] 0

Danke für eure Hilfe!


Ok, wenn ich z.B. den Fall betrachte:  n < r < m  

dann ist rang (AB) = maximal  r

rang(A) = maximal n  

rang (B) = maximal n

also wäre hier mgl.   rang(AB) [mm] \gt [/mm] min(rang(A), rang(B)...


Wie kann ich vorgehen???

zu 2)

ich habe drei beispiele gebildet, aber frage mich, ob das ausreicht; alle wichtigen fälle einschliesst...!

zu c)


c1)  A (2x3) ; B (3x1)   => n=3
A= [mm] \pmat{ 5 & 1 & 2\\ 5 & 1 & 2 } [/mm]

B = [mm] \pmat{ 2 \\ 2 \\ 2 } [/mm]

A*B = [mm] \pmat{ 16 \\ 16 } [/mm]

rang(AB) = 1

rang(A) = 1

rang(B) = 1

rang(AB) = min(rang(A), rang(B))

d1) rang(A) + rang(B) -n = rang(AB)

1 + 1 -3 = 1  Widerspruch!  


c2) A (3x2) ; B (2x4)   => n=2
A= [mm] \pmat{ 1 & 0\\ 0 & 1 \\ 0 & 4 } [/mm]

B = [mm] \pmat{ 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 } [/mm]


A*B = [mm] \pmat{ 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 4 & 4 & 4 &4 } [/mm]

rang(AB) = 2

rang(A) = 2

rang(B) = 2

rang(AB) = min(rang(A), rang(B))

d2) rang(A) + rang(B) -n = rang(AB)

2 + 2 -2 = 2  erfüllt.  


c3) A (2x2) ; B (2x2)   => n=2
A= [mm] \pmat{ 1 & 0\\ 0 & 1 } [/mm]

B = [mm] \pmat{ 0 & 1 \\ 1 & 0 } [/mm]

A*B = [mm] \pmat{ 0 & 1 \\ 1 & 0 } [/mm]

rang(AB) = 2

rang(A) = 2

rang(B) = 2

rang(AB) = min(rang(A), rang(B))

d3) rang(A) + rang(B) -n = rang(AB)

2 + 2 -2 = 2  erfüllt.  


Viele Fragezeichen...


Vielen Dank für eure Hilfe!!

Gruß
Wolfgang

        
Bezug
Matrizen Rang Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:18 Do 24.01.2008
Autor: angela.h.b.


> Sei K ein Körper und A [mm]\in[/mm] M (m x n, K) sowie B [mm]\in[/mm] M (n x
> r, K).
>
> 1. Beweisen Sie bitte die folgenden beiden Ungleichungen.
>
> a) rang (A*B)  [mm]\le[/mm] min(rang(A), rang(B))

Hallo,

Du solltest heir den Weg über die Homomorphismen, welche  durch A und B dargestellt werden, gehen:

Rang A ist ja die Anzahl der linear unabhängigen Spalten von A, also das Bild von [mm] f_A: \IR^n\to \IR^m [/mm] mit [mm] f_A(x):=Ax, [/mm]

für B entsprechend.

AB ist die Matrix, de die Verkettung beider Abbildungen repräsentiert, also [mm] f_A \circ f_B. [/mm]

Sonstiges:

zu [mm] d_2) [/mm] Wozu soll das ein Widerspruch sein???

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de