www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Matrizen bestimmen
Matrizen bestimmen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen bestimmen: Vorgehensweise
Status: (Frage) überfällig Status 
Datum: 20:51 Mi 14.06.2006
Autor: Lee1601

Aufgabe 1
Bestimmen Sie:

a) 2 Matrizen A,B [mm] \in [/mm] R^(4x4) mit CP(A) = CP(B) und MP(A)=MP(B), sodass A und B nicht ähnlich sind

b) 2 Matrizen A,B [mm] \in [/mm] R^(3x3) mit MP(A)=MP(B) und CP(A) [mm] \not= [/mm] CP(B)

c) 2 Matrizen A,B [mm] \in [/mm] R^(3x3) mit CP(A)=CP(B)= [mm] \produkt_{i=1}^{r}(t-\lambda_{i})^{m_{i}} [/mm] und dim [mm] HR_{\lambda}_{i}(B) [/mm] für [mm] 1\le [/mm] i [mm] \le [/mm] r, sodass MP(A) [mm] \not= [/mm] MP(B)

Aufgabe 2
Zeigen Sie: Sei A [mm] \in [/mm] K^(nxn) eine Matrix, für die das charakteristische Polynom in Linearfaktoren zerfällt. Dann gilt:

CP(A)=MP(A)     [mm] \gdw [/mm]    dim [mm] Eig_{\lambda}(A) [/mm] = 1 für jeden Eigenwert [mm] \lambda [/mm]

Hallo!

Bei der 1. Aufgabe hab ich keine Ahnung, wie ich die gesuchten Matrizen bestimmen soll. Matrizen deren CP gleich ist, sind ja nicht schwer zu finden, aber bei der Identität vom MP hörts bei mir leider schon auf. Wäre nett, wenn mir jemand sagt, wie man bei der Aufgabe (bzw den Teilaufgaben) vorgeht.

Die "Hinrichtung" bei der 2. Aufgabe sollen wir mit Widerspruch beweisen (also wurde uns empfohlen). Das hab ich auch versucht, aber ich komme nicht weiter, wenn ich von CP bzw MP auf einmal auf die Dimension des Eigenraumens schließen soll.
Kann mir vielleicht jemand sagen, wie man das macht? Der Ansatz bzw grobe Beweisverlauf würde schon reichen.

Vielen Dank schonmal und schönen Feiertag morgen!

LG

Linda

        
Bezug
Matrizen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:44 Mi 14.06.2006
Autor: Janyary

hi,

wofuer steht denn CP und MP?

LG Jany

Bezug
                
Bezug
Matrizen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:55 Do 15.06.2006
Autor: Herby

Hallo,

ich hab zwar nicht viel Ahnung von dem Krempel, aber das dürfte das charakteristische Polynom bzw. das Minimalpolynom sein.

Liebe Grüße
Herby

Bezug
                        
Bezug
Matrizen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 Do 15.06.2006
Autor: Lee1601

Ja, richtig!


CP=charakteristisches Polynom
MP=Minimalpolynom

Danke schonmal!

LG

Linda

Bezug
        
Bezug
Matrizen bestimmen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Fr 16.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de