www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrizendivision
Matrizendivision < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizendivision: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:33 Sa 20.06.2009
Autor: AdiS

Aufgabe
[mm] \vec{h2} = \vec{h1} + A * \vec{h1} [/mm]

meine Aufgabenstellung ist

[mm] \vec{h2} = \vec{h1} + A * \vec{h1} [/mm]

mit folgenden Zahlen:

[mm] \vec{h2} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} [/mm]

A = [mm] \bruch{1}{9} * \begin{pmatrix} -11 & -2 & 8\\ 4 & -14 & 2 \\ 5 & -4 & -11 \end{pmatrix} [/mm]

habe ich wie folgt umgeschrieben ( I = Einheitsmatrix) :

[mm] \vec{h2} = (A+I) * \vec{h1} mit (A+I) = \begin{pmatrix} -2/9 & -2/9 & 8/9\\ 4/9 & -5/9 & 2/9 \\ 5/9 & -4/9 & -2/9 \end{pmatrix} [/mm]

wenn ich jetzt nach [mm] \vec{h1} [/mm] umstelle ist meine Matrix A+I nicht mehr invertierbar ??

Ich habe aber eine Lösung gegeben:

h1 = [mm] \begin{pmatrix} -3 \\ -6 \\ 0 \end{pmatrix} [/mm]

Kann mir jemand auf die Sprünge helfen ?

Dankeschön!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Matrizendivision: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Sa 20.06.2009
Autor: barsch

Hi,

> [mm]\vec{h2} = \vec{h1} + A * \vec{h1}[/mm]
>  meine Aufgabenstellung
> ist
>  
> [mm]\vec{h2} = \vec{h1} + A * \vec{h1}[/mm]
>  
> mit folgenden Zahlen:
>  
> [mm]\red{\vec{h1}} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}[/mm]

du meinst bestimmt [mm] \vec{h2} [/mm] - ansonsten müsstest du einfach nur einsetzen.


> A = [mm]\bruch{1}{9} * \begin{pmatrix} -11 & -1 & 8\\ 4 & -14 & 2 \\ 5 & -4 & -11 \end{pmatrix} [/mm]
>  
> habe ich wie folgt umgeschrieben ( I = Einheitsmatrix) :
>  
>

[mm] \vec{h2} [/mm] = (A+I) * [mm] \vec{h1} [/mm]

korrekt.

Und

[mm] \vec{h2}=(A+I)* \vec{h1}\gdw{(A+I)^{-1}*\vec{h2}=\vec{h1}}, [/mm]

da [mm] \math{(A+I)} [/mm] invertierbar - zumindest hat mir ein Programm diese Inverse ausgegeben:

[mm] \begin{pmatrix} 9 & -17 & 19\\ 9 & -18 & 18\\ 9/2 & -13/2 & 7 \end{pmatrix} [/mm]

> mit (A+I) = [mm] \begin{pmatrix} -2/9 & -1/9 & 8/9\\ 4/9 & -5/9 & 2/9 \\ 5/9 & -4/9 & -2/9 \end{pmatrix} [/mm]


  

> Ich habe aber eine Lösung gegeben:
>  
> h1 = [mm]\begin{pmatrix} -3 \\ -6 \\ 0 \end{pmatrix}[/mm]

Rechne es also noch mal durch - aber vorneweg: Ich bin auf dieses [mm] h_1 [/mm] nicht gekommen.

Gruß barsch

Bezug
                
Bezug
Matrizendivision: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:33 Sa 20.06.2009
Autor: AdiS

ah, Sorry

ich hab mich in der Matrix vertippt:

A lautet :

[mm]\bruch{1}{9} * \begin{pmatrix} -11 & -2 & 8\\ 4 & -14 & 2 \\ 5 & -4 & -11 \end{pmatrix}[/mm]

Sonst bin ich den gleichen Weg gegangen wie Du, jedoch sagt mit mein Programm dass (A+I) nicht invertierbar ist.


Grüße, Adrian

Bezug
                        
Bezug
Matrizendivision: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 So 21.06.2009
Autor: barsch

Hi,

merkwürdig,...

> ah, Sorry
>  
> ich hab mich in der Matrix vertippt:
>  
> A lautet :
>  
> [mm]\bruch{1}{9} * \begin{pmatrix} -11 & -2 & 8\\ 4 & -14 & 2 \\ 5 & -4 & -11 \end{pmatrix}[/mm]

...auch diese Matrix besitzt eine Inverse. Berechne die Inverse mal []hier!

Gruß barsch

Bezug
                                
Bezug
Matrizendivision: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 So 21.06.2009
Autor: AdiS

Hi, Danke dass Du nochmal reinschaust.
Meine Aufgabenbeschreibung lässt etwas zu wünschen übrig :-)

> Hi,
>  
> merkwürdig,...
>  
> > ah, Sorry
>  >  
> > ich hab mich in der Matrix vertippt:
>  >  
> > A lautet :
>  >  
> > [mm]\bruch{1}{9} * \begin{pmatrix} -11 & -2 & 8\\ 4 & -14 & 2 \\ 5 & -4 & -11 \end{pmatrix}[/mm]
>  
> ...auch diese Matrix besitzt eine Inverse. Berechne die
> Inverse mal
> []hier!
>  
> Gruß barsch

Das stimmt, dass Problem was ich habe entsteht, wenn ich zu dieser Matrix die Einheitsmatrix dazu addiere und dann invertieren will:

[mm] \vec{h2} = \vec{h1} + A * \vec{h1} [/mm]
[mm] \vec{h2} = (A+I) * \vec{h1} mit (A+I) = \begin{pmatrix} -2/9 & -2/9 & 8/9\\ 4/9 & -5/9 & 2/9 \\ 5/9 & -4/9 & -2/9 \end{pmatrix} [/mm]


Bezug
                                        
Bezug
Matrizendivision: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 So 21.06.2009
Autor: barsch

Hi,

> Hi, Danke dass Du nochmal reinschaust.

wenn ich helfen kann, immer gerne :-)


> dieser Matrix die Einheitsmatrix dazu addiere und dann
> invertieren will:
>  
> [mm]\vec{h2} = \vec{h1} + A * \vec{h1}[/mm]
>  [mm]\vec{h2} = (A+I) * \vec{h1} mit (A+I) = \begin{pmatrix} -2/9 & -2/9 & 8/9\\ 4/9 & -5/9 & 2/9 \\ 5/9 & -4/9 & -2/9 \end{pmatrix} [/mm]

Jetzt stimmt's - die Matrix ist nun nicht mehr Invertierbar.
Aber das soll uns nicht stören:

Du hast [mm] \math{(A+I)} [/mm] und [mm] h_2 [/mm] gegeben.


[mm] \vec{h2} [/mm] = [mm] \vec{h1} [/mm] + A * [mm] \vec{h1}\gdw{\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}=\begin{pmatrix} -2/9 & -2/9 & 8/9\\ 4/9 & -5/9 & 2/9 \\ 5/9 & -4/9 & -2/9 \end{pmatrix}*h_1 } [/mm]

Und jetzt [mm] h_1:=\begin{pmatrix} x_1\\ x_2 \\ x_3 \end{pmatrix} [/mm]

Du musst also das Gleichungssystem

[mm] \begin{pmatrix} -2/9 & -2/9 & 8/9\\ 4/9 & -5/9 & 2/9 \\ 5/9 & -4/9 & -2/9 \end{pmatrix}*\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}=\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} [/mm] lösen.

Gruß barsch

Bezug
                                                
Bezug
Matrizendivision: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:28 So 21.06.2009
Autor: AdiS

aahh,

Warum man manchmal einfach nicht von dem Schlauch runterkommt, auf dem man steht.

Dankeschön!

Bezug
        
Bezug
Matrizendivision: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:19 Sa 20.06.2009
Autor: barsch

Noch ein kleiner Tipp:

Auch wenn ich dir jetzt die Inverse gegeben habe [bonk], so rate ich dir doch, sie einmal zu Fuß auszurechnen.

Gruß barsch

Bezug
        
Bezug
Matrizendivision: Beantwortet
Status: (Antwort) fertig Status 
Datum: 14:31 So 21.06.2009
Autor: barsch

Jetzt ist die Frage wohl beantwortet ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de