www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrizengleichung
Matrizengleichung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:24 Fr 26.09.2014
Autor: rubi

Hallo zusammen,

ich habe Schwierigkeiten mit der Lösung der folgenden Matrizengleichung:
Die Gleichung lautet [mm] (X*B)*(A*X*B)^{-1} [/mm] = E

Folgende Schritte habe ich gemacht:
1.)  X * B = E * (A*X*B)
2.) X * B = A * X * B   (nun mit [mm] B^{-1} [/mm] von rechts multiplizieren)
3.)  X = A * X  
4.)  X - A * X = 0
5.)  (E-A) * X = 0

Nun weiß ich nicht weiter, weil ich ja bei Matrizengleichungen nicht den Satz vom Nullprodukt anwenden kann.
X = Nullmatrix kann ja auch nicht herauskommen, da ja dann [mm] (A*X*B)^{-1} [/mm] nicht definiert wäre.

Ist diese Gleichung überhaupt sinnvoll lösbar ?

Vielen Dank für Eure Hinweise

Viele Grüße
Rubi

Ich habe diese Frage in keinem anderen Forum gestellt.


        
Bezug
Matrizengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:06 Fr 26.09.2014
Autor: Diophant

Hallo,

> Hallo zusammen,

>

> ich habe Schwierigkeiten mit der Lösung der folgenden
> Matrizengleichung:
> Die Gleichung lautet [mm](X*B)*(A*X*B)^{-1}[/mm] = E

>

> Folgende Schritte habe ich gemacht:
> 1.) X * B = E * (A*X*B)
> 2.) X * B = A * X * B (nun mit [mm]B^{-1}[/mm] von rechts
> multiplizieren)
> 3.) X = A * X
> 4.) X - A * X = 0
> 5.) (E-A) * X = 0

>

> Nun weiß ich nicht weiter, weil ich ja bei
> Matrizengleichungen nicht den Satz vom Nullprodukt anwenden
> kann.
> X = Nullmatrix kann ja auch nicht herauskommen, da ja dann
> [mm](A*X*B)^{-1}[/mm] nicht definiert wäre.

>

> Ist diese Gleichung überhaupt sinnvoll lösbar ?

>

Also meiner Ansicht nach ist man da doch schon nach der ersten Zeile fertig:

X*B=A*X*B

und die rechte Seite ist per Voraussetzung invertierbar. Das heißt doch sofort, dass A=E und die Gleichung somit für jede Matrix X mit [mm] det(X)\ne{0} [/mm] gültig ist.

Die Problematik mit dem Nullprodukt, die du richtig erkannt hast, die steckt ja eben von Anfang an in der Gleichung drin, wie man nach der ersten Umformung sofort einsieht.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de