www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Matrizenmultiplikation
Matrizenmultiplikation < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizenmultiplikation: Transponierter Vektor mal Matr
Status: (Frage) beantwortet Status 
Datum: 19:05 Mo 25.02.2013
Autor: Bodo0686

Hallo,
dieser Ansatz ist doch richtig oder?

[mm] $\vektor{0 \\ 1}^T \cdot \pmat{ a & b \\ c & d } [/mm] = [mm] \pmat{ 0*a + 0*c \\ 1*b + 1*d }$= \vektor{e\\f} [/mm]

Danke!

        
Bezug
Matrizenmultiplikation: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Mo 25.02.2013
Autor: Diophant

Hallo,

> dieser Ansatz ist doch richtig oder?
>
> [mm]\vektor{0 \\ 1}^T \cdot \pmat{ a & b \\ c & d } = \pmat{ 0*a + 0*c \\ 1*b + 1*d }[/mm]=[mm]\vektor{e\\ f}[/mm]

nein. Wie ist die Multiplikation von Matrizen definiert und was bedeutet das T?


Gruß, Diophant

Bezug
                
Bezug
Matrizenmultiplikation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:17 Mo 25.02.2013
Autor: Bodo0686


> Hallo,
>  
> > dieser Ansatz ist doch richtig oder?
>  >

> > [mm]\vektor{0 \\ 1}^T \cdot \pmat{ a & b \\ c & d } = \pmat{ 0*a + 0*c \\ 1*b + 1*d }[/mm]=[mm]\vektor{e\\ f}[/mm]
>  
> nein. Wie ist die Multiplikation von Matrizen definiert und
> was bedeutet das T?
>  
>
> Gruß, Diophant

T steht für transponieren...

Bezug
                        
Bezug
Matrizenmultiplikation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Mo 25.02.2013
Autor: Diophant

Hallo,

weißt du: ich weiß das mit dem T. Der Punkt ist: deine obige Matrizenmultiplikation ist grottenfalsch, darum hast du dich auch bisher nicht gekümmert. Meine Rückfrage war also rhetorischer Natur, denn woher soll ich wissen, wie du auf diese falsche Rechnung kommst?

Beim Multipliziern von Matrizen lässt sich jeder Eintrag im Ergebnis als Skalarprodukt

- der entsprechenden Zeile der linken mit
- der entsprechenden Spalte der rechten

Matrix auffassen. Dies zu recherchieren ist eigentlich deine Sache, setze es jetzt um.


Gruß, Diophant

Bezug
        
Bezug
Matrizenmultiplikation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:39 Mo 25.02.2013
Autor: Bodo0686


> Hallo,
>  dieser Ansatz ist doch richtig oder?
>  
> [mm]\vektor{0 \\ 1}^T \cdot \pmat{ a & b \\ c & d } = \pmat{ 0*a + 0*c \\ 1*b + 1*d }[/mm]=
> [mm]\vektor{e\\f}[/mm]
>  
> Danke!

Hallo,
also:$ (0,1) [mm] \cdot \pmat{ a & b \\ c & d } [/mm] = [mm] \pmat{ 0*a & 1*b \\ 0*c & 1*d }= \pmat{ 0 & b \\ 0 & d }$ [/mm]

Meinst du das so'? Grüße

Bezug
                
Bezug
Matrizenmultiplikation: Antwort
Status: (Antwort) fertig Status 
Datum: 22:52 Mo 25.02.2013
Autor: steppenhahn

Hallo,


> Hallo,
>  also:[mm] (0,1) \cdot \pmat{ a & b \\ c & d } = \pmat{ 0*a & 1*b \\ 0*c & 1*d }= \pmat{ 0 & b \\ 0 & d }[/mm]
>  
> Meinst du das so'? Grüße

Nein, das ist nicht richtig.
Bei der linken Matrix musst du die Zeilen durchgehen, bei der rechten die Spalten. Also:

[mm] $\begin{pmatrix}0 & 1\end{pmatrix}\cdot \begin{pmatrix}a & b\\ c & d\end{pmatrix} [/mm] = [mm] \begin{pmatrix}0\cdot a + 1 \cdot c & 0 \cdot b + 1 \cdot d\end{pmatrix}$ [/mm]

Ergebnis ist eine 1x2-Matrix!

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de