www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Max. Element ortho. Teilmengen
Max. Element ortho. Teilmengen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Max. Element ortho. Teilmengen: Frage
Status: (Frage) beantwortet Status 
Datum: 21:15 Di 14.12.2004
Autor: Junx

Hi,
ich hab hier eine Aufgabe bei der ich nicht so recht weiterkomme.
Vielleicht kann mir ja jemand einen kleinen Hinweis geben.

Eine Teilmenge T eines euklidischen Raumes V heißt orthogonal ,
falls ihre Elemente verschieden von 0 und paarweise orthogonal sind. Zeige, dass T linear unabhängig ist und dass die bezüglich Inklusion partiell geordnete Menge aller orthogonalen Teilmengen von V mindestens ein maximales Element hat. Sind diese immer Basen von V?

Also die lineare Unabhängigkeit leuchtet mir ja ein, aber ich hab irgendwie keine Idee, wie ich das zeigen soll.

Junx

        
Bezug
Max. Element ortho. Teilmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:50 Mi 22.12.2004
Autor: Julius

Hallo!

Sind [mm] $\{v_1,\ldots,v_n\}$ [/mm] beliebig aus $T$ gewählt mit

$0 = [mm] \lambda_1 v_1 [/mm] + [mm] \ldots [/mm] + [mm] \lambda_{i-1}v_{i-1} [/mm] + [mm] \lambda_i v_i [/mm] + [mm] \lambda_{i+1}v_{i+1} [/mm] + [mm] \ldots [/mm] + [mm] \lambda_n v_n$, [/mm]

so folgt:

[mm] $\lambda_i \langle v_i,v_i \rangle [/mm] = [mm] \lambda_1 \langle v_1,v_i \rangle [/mm] + [mm] \ldots \lambda_{i-1} \langle v_{i-1}, v_i \rangle [/mm] + [mm] \lambda_i \langle v_i,v_i \rangle [/mm] + [mm] \lambda_{i+1} \langle v_{i+1}, v_i \rangle [/mm] + [mm] \ldots [/mm] + [mm] \lambda_n \langle v_n,v_i \rangle [/mm] = [mm] \langle \lambda_1 v_1 [/mm] + [mm] \ldots [/mm] + [mm] \lambda_{i-1}v_{i-1} [/mm] + [mm] \lambda_i v_i [/mm] + [mm] \lambda_{i+1}v_{i+1} [/mm] + [mm] \ldots [/mm] + [mm] \lambda_n v_n, v_i \rangle [/mm] = [mm] \langle [/mm] 0, [mm] v_i \rangle [/mm] = 0$,

also:

[mm] $\lambda_i \langle v_i,v_i \rangle [/mm] = 0$

und daher

[mm] $\lambda_i=0$ [/mm]

wegen

[mm] $v_i \ne [/mm] 0$, also auch: [mm] $\langle v_i,v_i \rangle \ne [/mm] 0$.

Zur anderen Frage: Betrachte doch einfach die Vereinigungsmenge der partiell geordneten Menge aller orthogonalen Teilmengen von $V$. Diese ist wieder linear unabhängig.

Ob sie dann auch notwendig ein Basis ist? Dazu müsste man wissen, ob es in jedem euklidischen Raum eine Orthogonalbasis gibt. Dann wäre diese ja in dem maximalen Element enthalten. Im Falle einer existierenden abzählbaren (oder endlichen) Basis ist das auf jeden Fall so.

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de