www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Maxima, Minima
Maxima, Minima < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maxima, Minima: Tipp, Hilfe
Status: (Frage) beantwortet Status 
Datum: 20:52 Fr 18.02.2011
Autor: Jessica2011

Folgende Aufgabenstellung:

Die auf dem abgeschlossenen Intervall [0,3] durch

f(x)=   2x                    wenn x [mm] \in [/mm] [0,1]
        ( [mm] 3(x-2)^4)-1 [/mm]     wenn [mm] x\in [/mm] (1,3]

definierte reelle Funktion ist stetig; dies dürfen Sie benutzen.
Auf ihrer Definitionsmenge [0,3] nehme sie ihr maximum und minimum an.
Bestimmen sie jeweils die globalen Maximumstellen und alles globalen minimastellen und geben sie das globale Maximum und das globale minimum an.


Idee: extremwerte berechnet man über die erste ableitung.

Muss ich jtzt jeweils die extremstellen von 2x bestimmen und dann von der zweiten teilfunktion? und was für einen zusammenhang hat das mit der stetigkeit, die wir benutzen dürfen?


        
Bezug
Maxima, Minima: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Fr 18.02.2011
Autor: Blech

Hi,

> Muss ich jtzt jeweils die extremstellen von 2x bestimmen und dann von der zweiten teilfunktion?

ja, und dann schaust Du welche extremer sind. =)

> und was für einen zusammenhang hat das mit der stetigkeit, die wir benutzen dürfen?

Ohne Stetigkeit muß es kein Extremum geben.

Bsp:

[mm] $f(x):=\begin{cases} x&\text{fuer }x\in [0,1)\\ -x& \text{fuer } x\in [1,2)\\ 0&\text{fuer } x=3\end{cases}$ [/mm]

hat keins.

ciao
Stefan


Bezug
                
Bezug
Maxima, Minima: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:38 Fr 18.02.2011
Autor: Jessica2011

okay also ...

von 2x

f´(x)=2  , um die extremwerte zu berechnen müsste ich ja f´(x)=0 setzen,

d.h. es würde folgen 2 [mm] \not= [/mm] 0 .. das heißt doch dass es keine extremwerte hat, oder nicht ?


2. teilfunktion:

(3 [mm] (x-2)^4)-1 [/mm]

f´(x)= [mm] 12(x-2)^3 [/mm]

f´´(x)= 36 [mm] (x-2)^2 [/mm]

so jetzt müsste ich ja

[mm] 12(x-2)^3=0 [/mm] setzen... das ist jedoch mit ausmultiplizieren etc eine enorme arbeit... in einer klausur in der taschenrechner verbot herrscht, kann es doch nicht angehen dass sie solche eine aufgabe stellen :O .. oder es gibt ein trick und ich seh es nicht ?

Bezug
                        
Bezug
Maxima, Minima: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Fr 18.02.2011
Autor: fencheltee


> okay also ...
>
> von 2x
>  
> f´(x)=2  , um die extremwerte zu berechnen müsste ich ja
> f´(x)=0 setzen,
>  
> d.h. es würde folgen 2 [mm]\not=[/mm] 0 .. das heißt doch dass es
> keine extremwerte hat, oder nicht ?

genau, aber was ist mit den randpunkten? (hier der linke)

>  
>
> 2. teilfunktion:
>  
> (3 [mm](x-2)^4)-1[/mm]
>  
> f´(x)= [mm]12(x-2)^3[/mm]
>  
> f´´(x)= 36 [mm](x-2)^2[/mm]
>  
> so jetzt müsste ich ja
>  
> [mm]12(x-2)^3=0[/mm] setzen... das ist jedoch mit ausmultiplizieren
> etc eine enorme arbeit... in einer klausur in der
> taschenrechner verbot herrscht, kann es doch nicht angehen
> dass sie solche eine aufgabe stellen :O .. oder es gibt ein
> trick und ich seh es nicht ?

ein produkt ist 0, wenn einer der faktoren 0 ist. 12 ist schonmal nicht 0, und wann [mm] (x-2)^3 [/mm] 0 ist, sieht auch n blinder noch

gruß tee


Bezug
                                
Bezug
Maxima, Minima: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Fr 18.02.2011
Autor: Jessica2011

was meinst du mit den randpunkten?

zur zweiten teilfolge:

x=2 ist eine Nullstelle

Bezug
                                        
Bezug
Maxima, Minima: Antwort
Status: (Antwort) fertig Status 
Datum: 22:04 Fr 18.02.2011
Autor: abakus


> was meinst du mit den randpunkten?
>  
> zur zweiten teilfolge:
>  
> x=2 ist eine Nullstelle

Gefragt sind GLOBALE Extremstellen, nicht lokale.
Zeichne dir die Funktion!
Gruß Abakus


Bezug
                                                
Bezug
Maxima, Minima: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 Fr 18.02.2011
Autor: abakus

Hallo,
ZUFÄLLIG ist das lokale Minimum auch das globale.
Maxima wirst du aber nicht mit der ersten Ableitung finden:
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                                        
Bezug
Maxima, Minima: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:32 Fr 18.02.2011
Autor: Jessica2011

sondern mit der zweiten oder wie

Bezug
                                                                
Bezug
Maxima, Minima: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Fr 18.02.2011
Autor: MathePower

Hallo Jessica2011,

> sondern mit der zweiten oder wie


Maxima findest Du mit keiner Ableitung.

Betrachte dazu  die Randpunkte des jeweiligen Intervalles.


Gruss
MathePower

Bezug
                                                                        
Bezug
Maxima, Minima: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:09 Sa 19.02.2011
Autor: Jessica2011

ahso also liegt mein globales maximum bei 3 und globales minimum bei 1.. das wars ? :O

Bezug
                                                                                
Bezug
Maxima, Minima: Antwort
Status: (Antwort) fertig Status 
Datum: 01:15 Sa 19.02.2011
Autor: fencheltee


> ahso also liegt mein globales maximum bei 3 und globales
> minimum bei 1.. das wars ? :O

bei x=1 sehe ich eher ein weiteres maximum.. räts du oder rechnest du auch etwas?

gruß tee

Bezug
                                                                                        
Bezug
Maxima, Minima: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:12 Sa 19.02.2011
Autor: Jessica2011

ich habe mir lediglich die randpunkte angeschaut...
irgendwie steh ich gerade auf dem schlauch.. wie berechnet man das dennn

Bezug
                                                                                                
Bezug
Maxima, Minima: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Sa 19.02.2011
Autor: angela.h.b.


> ich habe mir lediglich die randpunkte angeschaut...
>  irgendwie steh ich gerade auf dem schlauch.. wie berechnet
> man das dennn

Hallo,

Du sollst die abschnittweise definierte, stetige Funktion f mit

[mm]f(x):=\begin{cases} 2x, & \mbox{fuer } x\in [0,1] \\ 3(x-2)^4-1, & \mbox{fuer } x\in (1,3] \end{cases} [/mm]

auf Extremwerte untersuchen.

Vorgehensweise: in den Intervallen (0,1) und (1,3) kannst Du die Extremwerte bestimmen, indem Du, wie aus der Schule sicher wohlbekannt, das Procedere mit 1. Ableitung etc. durchführst.

Schaue dann noch die Ränder der Funktion, also f(0) und f(3), im Hinblick darauf an, ob hier Stellen vorliegen, die die bereits berechneten Extremwerte übertrumpfen.

Weitere Stellen, die Aufmerksamkeit verdienen, sind die Nahtstellen abschnittweise definierter Funktionen: hier können Extremwerte vorliegen, die Du durch Betrachten der 1. Ableitung nicht erwischst.
Eine Nahtstelle hast Du bei Deiner Funktion an der Stelle x=1.
Schlag nach, wie Minimum/Maximum definert ist und untersuche bzw. zeige, daß eines vorliegt.

Schau am Ende, wenn Du alle rel. Extrema hast, nach, welches das größte Maximum und das kleinste Minimum ist. Das sind die globalen Extremstellen.

Gruß v. Angela



Bezug
                                                                                                        
Bezug
Maxima, Minima: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 Sa 19.02.2011
Autor: Jessica2011

Gut danke schön...

dann gab es noch eine ähnliche aufgabe mit folgender teilfunktion:

[mm] (x^2)^x [/mm]

die erste ableitung wäre: [mm] (x^2)^x [/mm] * (ln [mm] x^2 [/mm] +2)

oder [mm] e^{xlnx^2} [/mm] *(ln [mm] x^2 [/mm] +2)

wenn ich die jetzt gleich null stelle dann kann doch der term mit e nicht null werden stimmts?

d.h. mann muss sich nur noch (ln [mm] x^2 [/mm] +2)=0 angucken  und wie hat man da nochmal die Nullstellen ermittelt?

Bezug
                                                                                                                
Bezug
Maxima, Minima: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Sa 19.02.2011
Autor: kamaleonti

Hallo,
> dann gab es noch eine ähnliche aufgabe mit folgender
> teilfunktion:
>  
> [mm](x^2)^x[/mm]
>  
> die erste ableitung wäre: [mm](x^2)^x[/mm] * (ln [mm]x^2[/mm] +2)
>  
> oder [mm]e^{xlnx^2}[/mm] *(ln [mm]x^2[/mm] +2)
>  
> wenn ich die jetzt gleich null stelle dann kann doch der
> term mit e nicht null werden stimmts?

Ja, denn der Wertebereich der Exponentialfunktion ist positiv, d.h. alle Funktionswerte sind echt größer Null.

>  
> d.h. mann muss sich nur noch (ln [mm]x^2[/mm] +2)=0 angucken  und
> wie hat man da nochmal die Nullstellen ermittelt?

Es ist [mm] $\ln(x^2)=2\ln(x)$ [/mm] nach Logarithmengesetz. Die Gleichung [mm] $2\ln(x)+2=0$ [/mm] kannst du sicherlich lösen :-)

Gruß


Bezug
                                                                                                                        
Bezug
Maxima, Minima: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:28 Sa 19.02.2011
Autor: Jessica2011

Gut danke schön...

dann gab es noch eine ähnliche aufgabe mit folgender teilfunktion:

2 ln x +2 =0

2lnx =-2 | :2

lnx = -1

x= e^-1    stimmt das so?

Bezug
                                                                                                                                
Bezug
Maxima, Minima: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Sa 19.02.2011
Autor: kamaleonti

Hallo,
> 2 ln x +2 =0
>  
> 2lnx =-2 | :2
>  
> lnx = -1
>  
> x= [mm] e^{-1} [/mm]    stimmt das so?

Prima!

Gruß


Bezug
                                                                                                                                        
Bezug
Maxima, Minima: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Sa 19.02.2011
Autor: Jessica2011

wäre die Ableitung von:

[mm] e^{xlnx^2} [/mm]  * (ln [mm] x^2 [/mm] +2 ) denn richtig:

f´´(x)= [mm] ((lnx^2 [/mm] + [mm] 2)*e^{xlnx^2}) [/mm] * (ln [mm] x^2+2)+ e^{xlnx^2}* (1/x^2 [/mm] * 2x)

?

Bezug
                                                                                                                                                
Bezug
Maxima, Minima: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Sa 19.02.2011
Autor: schachuzipus

Hallo Jessica2011,


> wäre die Ableitung von:
>  
> [mm]e^{xlnx^2}[/mm]  * (ln [mm]x^2[/mm] +2 ) denn richtig:
>  
> f´´(x)= [mm]((lnx^2[/mm] + [mm]2)*e^{xlnx^2})[/mm] * (ln [mm]x^2+2)+ e^{xlnx^2}* (1/x^2[/mm]  * 2x)
>  
> ?

Ja, das ist richtig, fasse das aber mal noch schön zusammen ...

Gruß

schachuzipus


Bezug
                                                                                                                                                        
Bezug
Maxima, Minima: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Sa 19.02.2011
Autor: Jessica2011

[mm] e^{xlnx^2} [/mm] * [mm] (lnx^2+2)^2 [/mm] + (ln [mm] x^2 [/mm] + 2) *2/x


ist das nicht eine gemeine aufgabenstellung.. für eine klausur mit taschenrechnerverbot?...


Bezug
                                                                                                                                                                
Bezug
Maxima, Minima: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 So 20.02.2011
Autor: MathePower

Hallo Jessica2011,

> [mm]e^{xlnx^2}[/mm] * [mm](lnx^2+2)^2[/mm] + (ln [mm]x^2[/mm] + 2) *2/x
>  


Hier muss doch

[mm]e^{xlnx^2} *\left( (ln\left(x^{2}\right)+2)^{2} + \bruch{2}{x}\right)[/mm]

stehen.

Wäre Deine Zusammenfassung richtig, dann
könntest Du [mm]ln\left(x^{2}\right)+2[/mm] ausklammern.


>
> ist das nicht eine gemeine aufgabenstellung.. für eine
> klausur mit taschenrechnerverbot?...
>  


Sofern die Nullstellen dieser Ableitung ermittelt werden müssen,
ist das schon gemein, da diese nicht ohne Hilfsmittel ermittelt
werden können.


Gruss
MathePower

Bezug
                                                                                        
Bezug
Maxima, Minima: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:52 Sa 19.02.2011
Autor: Jessica2011

okay...

1. Bestimmung der extremwerte

f`(x)=2   [mm] \not= [/mm] 0 kein extrempunkt vorhanden

f`(x)= 12 [mm] (x-2)^3 [/mm] fuer x=2 ein extrempunkt

wenn ich das jetzt aber in die zweite ableitung einsetzte (hinreichende Bedingung) dann folgt

f``(x)= [mm] 36(x-2)^2 \Rightarrow [/mm] 0 ... so das liefert jedoch keine aussage darueber ob es ein minima oder maxima ist.

<0 waere ja normalerweise Maximum
und groesser Null Minimum...

wenn ich aber 2 in die ausgangsteilfunktion einsetze (in die zweite)
dann erhalte ich

f(2)=-1

koennte ich jetzt hieran ableiten dass es ein minimum ist ?
duerfte man das ?

dann sollte ich noch die Randpunkte (0,3) anschaun

fuer 2x habe ich ermittelt

f(0)=0
f(3)=6

fuer die zweite teilfunktion habe ich ermittelt

f(0)=47
f(3)=2

dann sollte ich noch die nahtstellen genauer ansehen

fuer x=1

hab ich da einmal

fuer f(x)=2x   > 2 raus

und fuer die zweite teilfunktion ebenfalls 2...

soweit erstmal richtig?

Bezug
                                                                                                
Bezug
Maxima, Minima: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Sa 19.02.2011
Autor: abakus


> okay...
>  
> 1. Bestimmung der extremwerte
>  
> f'(x)=2   [mm]\not=[/mm] 0 kein extrempunkt vorhanden
>  
> f'(x)= 12 [mm](x-2)^3[/mm] fuer x=2 ein extrempunkt
>  
> wenn ich das jetzt aber in die zweite ableitung einsetzte
> (hinreichende Bedingung) dann folgt
>  
> f''(x)= [mm]36(x-2)^2 \Rightarrow[/mm] 0 ... so das liefert jedoch
> keine aussage darueber ob es ein minima oder maxima ist.
>  
> <0 waere ja normalerweise Maximum
> und groesser Null Minimum...
>  
> wenn ich aber 2 in die ausgangsteilfunktion einsetze (in
> die zweite)
>  dann erhalte ich
>  
> f(2)=-1
>
> koennte ich jetzt hieran ableiten dass es ein minimum ist
> ?
>  duerfte man das ?
>  
> dann sollte ich noch die Randpunkte (0,3) anschaun
>  
> fuer 2x habe ich ermittelt
>  
> f(0)=0
>  f(3)=6

Die erste Teilfunktion ist für x=3 schon längst nicht mehr definiert gewesen

>  
> fuer die zweite teilfunktion habe ich ermittelt
>  
> f(0)=47

Die zweite Teilfunktion war nur von 1 bis 3 definiert. Wozu berechnest du da den Funktiuonswert an der Stelle 0?

>  f(3)=2
>  
> dann sollte ich noch die nahtstellen genauer ansehen
>  
> fuer x=1
>  
> hab ich da einmal
>  
> fuer f(x)=2x   > 2 raus
>  
> und fuer die zweite teilfunktion ebenfalls 2...
>  
> soweit erstmal richtig?


Bezug
                                                                                                        
Bezug
Maxima, Minima: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Sa 19.02.2011
Autor: Jessica2011

hmm ja dann hätte ich wohl meine globale maxima bei x=1 und x=3 beides mal kommt die 2 raus.

und globale minima bei x=2 -> -1 ...

jetzt fertig?

Bezug
                                                                                                                
Bezug
Maxima, Minima: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 Sa 19.02.2011
Autor: abakus


> hmm ja dann hätte ich wohl meine globale maxima bei x=1
> und x=3 beides mal kommt die 2 raus.
>  
> und globale minima bei x=2 -> -1 ...
>  
> jetzt fertig?

Ja. fassen wir zusammen:
Stelle des globalen Minimums: x=2
Wert des globalen Minimums: f(2)=-1
Begründung: einzige LOKALE Minimumstelle, und alle Funktionswerte an den Grenzen der Teilbereiche sind größer.

Stellen mit globalen Maxima: x=1 und x=3
Wert des globalen Maximums: 2
Begründung: Da keine lokalen Maxima existieren, kann das globale Maximum nur der größte aller Funktionswerte an den Grenzen der Teilbereiche sein.
Gruß Abakus



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de