www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematica" - Maxima in Messdaten finden
Maxima in Messdaten finden < Mathematica < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematica"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maxima in Messdaten finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:51 Mi 25.01.2012
Autor: Chomping-Nazgul

Aufgabe
Die Aplitudenwerte der Spannungsabfälle an C und R sind sowohl aus der simulierten, als auch aus den reellen Daten in einem halblogarithmischen Plot (lnU - t) als Funktion der Zeit darzustellen. Die Steigung bestimmt die Dämpungskonstante γ. Vergleichen Sie die simulierten und gemessen Daten mit den theoretischen, welche aus (3) berechnet werden können

Ich habe einige Messdaten eines Oszilloskopes, das mit einem Schwingungssignal gespeist wird (U-t Diagramm). Ich wollte nun fragen, ob es eine schnelle Methode gibt, alle lokalen Maxima (Die Peaks) inklusive ihrer t-koordinate herauszufinden.

Das fitten der Werte mit der zu erwartenden Kurve funktioniert nicht, da die Fit-Kurve sich nicht genug angleicht (zu viele Messpunkte). Ich habe bereits Funktionen in Wolfram Mathematica versucht, aber es wird nur der erste Maximalwert ausgegeben, ohne zugehörigen Zeitwert.

Muss ich jetzt etwa alle Werte einzeln finden? Vielen dank schon mal.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Maxima in Messdaten finden: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Fr 27.01.2012
Autor: Peter_Pein

Hallo,

ich nehme mal den "worst case" an, dass die Daten zeitlich nicht regelmäßig (nicht äquidistant) erhoben wurden und etwas verrauscht sind:

f=Sin[#1]^2 Exp[-(#1/(2 \[Pi]))]&;data=SortBy[Transpose[({#1,f[#1] RandomReal[{.95,1.05},Length[#1]]}&)[RandomReal[{0,8 \[Pi]},1234]]],First];das schauen wir uns mal näher an (der Wert 20 in der Funktion MovingAverage sollte bei weniger bzw. genaueren Messpunkten etwas niedriger gewählt werden):

lp=With[{nmax=10},ListPlot[{data,d2=MovingAverage[data,20]},PlotRange->All,PlotStyle->AbsolutePointSize[1],Joined->{False,True},Axes->None,Frame->True,PlotLabel->Style["verrauschte Messwerte",12,Darker[Blue]],ImageSize->Large]]das Bild ist im [a]angehängten Notebook zu finden.

Maxima zeichnen sich dadurch aus, dass die benachbarten Messpunkte eine geringete Spannung enthalten. Durch das verrauschte Signal bekommt man viel zu viele Maxima, aber die werden im Schritt darauf reduziert:

1: Length[maxima=Select[Partition[d2,3,1],#[[1,2]]<#[[2,2]]>#[[3,2]]&][[All,2]]]
2:  18
Pi mal Auge enthält der Plot der Messwerte acht Maxima. Lassen wir also Mathematica die "Scheinmaxima" zusammenfassen:

1: clustermax=Mean/@FindClusters[maxima,8,DistanceFunction->(Norm[#1-#2]&),Method->"Agglomerate"]
2:  {{1.59497,0.566079},{4.58668,0.321462},{7.77472,0.176319},{11.0908,0.115498},{14.4754,0.0652534},{17.2942,0.040673},{20.2576,0.0266313},{23.6505,0.0163898}}
Kurze Plausibilitätsprüfung:

Show[lp,Graphics[{Red,AbsolutePointSize[4],Point@clustermax}],PlotLabel->Style["Messwerte und ungefähre Maxima",Darker@Blue]](Bild wie gehabt im Anhang)

Den halblogarithmischen Plot erhält man wie üblich per:
logmaxplot=ListLogPlot[maxima,Joined->True,InterpolationOrder->3,Epilog->{Red,Point[MapAt[Log,#,2]&/@clustermax]},AxesLabel->{"t",TraditionalForm[Log[Subscript[U, max]]]},PlotStyle->{Thick,GrayLevel@.6}](Bild: Anhang)

Das Maximum an sich fühlt sich wohl, wo die erste Ableitung verschwindet und die zwote kleiner als Null ist:

1: exakt=SortBy[x/. {ToRules[Reduce[(f^\[Prime]\[Prime])[x]<(f^\[Prime])[x]==0<=x<=8 \[Pi],x]]},N];
2: InputForm[exakt]
3: N[exakt]
4:  {2*ArcTan[(-1 + Sqrt[1 + 16*Pi^2])/(4*Pi)], 
5:  2*Pi + 2*ArcTan[(-1 - Sqrt[1 + 16*Pi^2])/(4*Pi)], 
6:  2*Pi + 2*ArcTan[(-1 + Sqrt[1 + 16*Pi^2])/(4*Pi)], 
7:  4*Pi + 2*ArcTan[(-1 - Sqrt[1 + 16*Pi^2])/(4*Pi)], 
8:  4*Pi + 2*ArcTan[(-1 + Sqrt[1 + 16*Pi^2])/(4*Pi)], 
9:  6*Pi + 2*ArcTan[(-1 - Sqrt[1 + 16*Pi^2])/(4*Pi)], 
10:  6*Pi + 2*ArcTan[(-1 + Sqrt[1 + 16*Pi^2])/(4*Pi)], 
11:  8*Pi + 2*ArcTan[(-1 - Sqrt[1 + 16*Pi^2])/(4*Pi)]}
12:  {1.49139,4.63298,7.77457,10.9162,14.0578,17.1993,20.3409,23.4825}


Die Ausgleichgerade durch die exakten Werte dauert ein Weilchen:

1: In[14]:= logmaxgerade[t_] = Collect[InterpolatingPolynomial[
2:     Transpose[{exakt[[1 ;; 2]], Log[f[exakt[[1 ;; 2]]]]}], t], t, 
3:    FullSimplify[TrigToExp[#1], t > 0] & ]
4: Out[14]= -(t/(2*Pi)) + (Pi*ArcCot[4*Pi] - 2*ArcCot[(4*Pi)/(1 + Sqrt[1 + 16*Pi^2])]*
5:      ArcTan[(4*Pi)/(-1 + Sqrt[1 + 16*Pi^2])] + 
6:     2*ArcCot[(4*Pi)/(-1 + Sqrt[1 + 16*Pi^2])]*
7:      ArcTan[(4*Pi)/(1 + Sqrt[1 + 16*Pi^2])])/Pi^2 + Log[1 + 1/(-1 - 16*Pi^2)]


da haben wir also [mm]k=-\frac{1}{2 \pi}[/mm] (passt ja zu [mm]f(t)[/mm]).

1: logmaxgerade[t]//N
2:  -0.00631261-0.159155 t


Die Ausgleichsgerade durch die aus der Messung ermittelten Maxima geht wesentlich schneller:
1: logmessmaxgerade[t_]=Fit[MapAt[Log,#,2]&/@clustermax,{1,t},t]
2:  -0.0215603-0.15908 t


Ein Fit funktioniert auch bei diesem Beispiel mit über 1000 Messwerten 1a:

1: (nlf=NonlinearModelFit[data,Exp[a t]Sin[b t]^2,{a,b},t])//Normal
2:  E^(-0.159023 t) Sin[0.999928 t]^2


und damit lassen sich auch Maxima bestimmen:
1: FindMaximum[nlf[t],{t,#}]&/@clustermax[[All,1]]//Column
2: {{0.783884,{t->1.49155}}
3:  {0.47563,{t->4.63337}}
4:  {0.288593,{t->7.77519}}
5:  {0.175107,{t->10.917}}
6:  {0.106248,{t->14.0588}}
7:  {0.0644671,{t->17.2006}}
8:  {0.0391161,{t->20.3425}}
9:  {0.0237341,{t->23.4843}}



Soweit erst mal.

Gruß,
Peter


Dateianhänge:
Anhang Nr. 1 (Typ: nb) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematica"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de