www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Maximales Volumen Quader
Maximales Volumen Quader < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximales Volumen Quader: Beweis für meine Lösung?
Status: (Frage) beantwortet Status 
Datum: 12:10 Mo 05.06.2006
Autor: Mystoph

Aufgabe
Finden Sie das grösste Volumen eines Quaders im R3 bei fest vorgegebener Oberfläche von 10 m2.

Ich habe eine Lösung für obenstehende Aufgabe, aber keinen richtigen Analysis-Beweis dafür, dass es so sein muss.

Also meiner Meinung nach ist das Volumen maximal für einen Würfel also
( [mm] \wurzel{A/6})^{3} [/mm] = 2.15 [mm] m^{3} [/mm]

Aber ich glaub nicht, dass ich das einfach so lösen darf - hat jemand einen Tipp, wie ich da rangehen soll...?

Vielen Dank!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Maximales Volumen Quader: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Mo 05.06.2006
Autor: felixf

Hallo!

> Finden Sie das grösste Volumen eines Quaders im R3 bei fest
> vorgegebener Oberfläche von 10 m2.
>  Ich habe eine Lösung für obenstehende Aufgabe, aber keinen
> richtigen Analysis-Beweis dafür, dass es so sein muss.
>  
> Also meiner Meinung nach ist das Volumen maximal für einen
> Würfel also
> ( [mm]\wurzel{A/6})^{3}[/mm] = 2.15 [mm]m^{3}[/mm]
>  
> Aber ich glaub nicht, dass ich das einfach so lösen darf -
> hat jemand einen Tipp, wie ich da rangehen soll...?

Ich nehme mal an, du sollst Differentialrechnung verwenden!

Wenn du einen Quader mit den Seitenlaengen $a, b, c > 0$ hast, dann ist das Volumen durch $V = a b c$ gegeben. Das willst du maximieren. Nun soll weiterhin gelten, dass die Oberflaeche 10 Quadratmeter gross ist. Die Oberflaeche ist $10 = O = 2 a b + 2 a c + 2 b c$ (wir nehmen an, dass $a, b, c$ in Metern gegeben sind.

Dies ist deine Nebenbedingung: Du willst also $V$ maximieren unter der Bedingung $O = 10$. Nun kannst du $O = 10$ umformen zu $2 a (b + c) = 2 (5 - b c)$, also $a = [mm] \frac{5 - b c}{b + c}$ [/mm] und dies in $V$ einsetzen. Also ist $V = [mm] \frac{5 - b c}{b + c} \cdot [/mm] b c$.

So. Bleibt die Frage, fuer welche $b, c > 0$ auch $a > 0$ ist. Dieses Gebiet musst du bestimmen; sei es etwa mit $M$ bezeichnet.

Du hast also die Funktion $V : M [mm] \to \IR$, [/mm] $(b, c) [mm] \mapsto \frac{5 - b c}{b + c} \cdot [/mm] b c$. Wie bestimmst du von dieser Funktion die Maxima?

LG Felix


Bezug
                
Bezug
Maximales Volumen Quader: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:08 Mo 05.06.2006
Autor: Mystoph

Vielen Dank, Felix! Alles klar... :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de