www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Maximum-Likelihood-Schätzer
Maximum-Likelihood-Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum-Likelihood-Schätzer: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:22 So 08.02.2009
Autor: ella87

Aufgabe
Seien [mm][mm] X_1,...,X_n[/mm] [mm] unabhängig, identisch verteilt mit Dichte
[mm]f_{\Theta}(x)=\left\{\begin{matrix} \Theta x^{-\Theta-1, & \mbox{wenn }x>1\mbox{ } \\ 0, & \mbox{sonst} \mbox{ } \end{matrix}\right[/mm]
wobei [mm]\Theta>0[/mm]. Bestimmen sie den Maximum-Likelihood-Schätzer für [mm]\Theta[/mm]

[mm]L_{\Theta}(x_1,...,x_n)=f(x_1)*...*f(x_n)=\Theta x_1^{-\Theta-1}*...*\Theta x_n^{-\Theta-1} =\produkt_{i=1}^{n}\Theta x_i^{-\Theta-1}=\Theta^n\produkt_{i=1}^{n}x_i^{-\Theta-1} =\Theta^n(\produkt_{i=1}^{n}x_i)^{-\Theta-1}[/mm]

hier weiß ich jetzt nicht mehr weiter, vermutlich noch mehr umformen, oder??
und dann doch theoritisch logerithmieren, also:
[mm]log L_{\Theta}(x_1,...,x_n)=nlog\Theta+(-\Theta-1)log(\produkt_{i=1}^{n}x_i)[/mm]wobei ich [mm]log(\produkt_{i=1}^{n}x_i)=\produkt_{i=1}^{n}logx_i[/mm] setzen kann und damit durch ausmultiplizieren noch [mm]nlog\Theta-\Theta\produkt_{i=1}^{n}logx_i-\produkt_{i=1}^{n}logx_i[/mm]hätte.
dann müsste ich doch nach [mm] \Theta [/mm] ableiten und so ein Maximum berechen.
Ableitung wäre dann doch [mm]\bruch{n}{\Theta}+\produkt_{i=1}^{n}logx_i[/mm]
und [mm]\hat\Theta=\bruch{n}{\produkt_{i=1}^{n}logx_i}[/mm] das ist dann auch wirklich ein Maximum, wenn man es in die 2. Ableitung ([mm]\bruch{-n}{\Theta^2}[/mm])einsetzt und damit doch mein gesuchter Maximum-Likelihood-Schätzer, oder??????


        
Bezug
Maximum-Likelihood-Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 So 08.02.2009
Autor: luis52

Moin ella87

Fast alles ok, bis auf  $ [mm] \log(\produkt_{i=1}^{n}x_i)=\sum_{i=1}^{n}\log x_i [/mm] $ und nicht  
$ [mm] log(\produkt_{i=1}^{n}x_i)=\produkt_{i=1}^{n}logx_i [/mm] $.

vg Luis

Bezug
                
Bezug
Maximum-Likelihood-Schätzer: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:45 So 08.02.2009
Autor: ella87

ohja, natürlich!
noch ein,zwei kleine fragen:
es ist doch korrekt, dass ich hier log und nicht ln schreibe, oder?
die aufgabe wurde in einer sonderübung als klausurvorbereitung bei uns gerechnet und der lösungsweg sieht da so aus (die schleppen immer noch die [mm]\I1[/mm] mit; muss man das??)

[mm]L_{\Theta}(x_1,...,x_n)=\produkt_{i=1}^{n}( \Theta x_i^{-\Theta-1}*\I1_{{x>1}})= \Theta^n (\produkt_{i=1}^{n} x_i)^{-\Theta-1} \produkt_{i=1}^{n} \I1_{{x_i >1}}[/mm]
[mm]log L_{\Theta}(x_1,...,x_n)= (-\Theta-1) * log(\Theta^n(\produkt_{i=1}^{n}x_i)*\I1_{min x_i<1})[/mm]
und leiten dann natürlich mit produktregel ab und kommen auf
[mm]n*\Theta^{n-1} (\produkt_{i=1}^{n}x_i)^{- \Theta-1}*1_{min x_i >1} + (-1) ln (\produkt_{i=1}^{n} x_i)(\produkt_{i=1}^{n})^{- \Theta-1}*1_{min x_i >1} [/mm]
und die Lösung ist dann [mm]\bruch{n}{ln(\produkt_{i=1}^{n}x_i)}[/mm]
warum ln? was ist denn richtig? ln oder log? und muss ich die 1 immer mitziehen oder reicht das wenn ich sage, dass ich nur x>1 betrachte?

Bezug
                        
Bezug
Maximum-Likelihood-Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 So 08.02.2009
Autor: luis52


>  warum ln? was ist denn richtig? ln oder log?

Beides ist okay. Mit [mm] $\log$ [/mm] wird vielfach implizit der natuerliche Logarithmus [mm] $\ln$ [/mm] gemeint. Egal, welchen Logarithmus du waehlst, es wird nichts am Ergebnis aendern.

> und muss ich
> die 1 immer mitziehen oder reicht das wenn ich sage, dass
> ich nur x>1 betrachte?

Nein, brauchst du nicht, da [mm] $x_1,\dots,x_n$ [/mm] eine Stichprobe
ist und somit alle [mm] $x_i>1$ [/mm] sind.

vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de