www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Maximum bestimmen
Maximum bestimmen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 Di 25.03.2008
Autor: blinktea

Aufgabe
Man bestimme das Maximum der Funktion [mm] x^4+y^2 [/mm] auf dem abgeschlossenen Einheitskreis.

Also jetzt muss ich ja erstmal die Ableitung bilden, die ist
[mm] (4x^3, [/mm] 2y) und um die Extrema zu berechnen muss ja (x,y)=(0,0) gesetzt werden. Ich weiß ja, dass die Fukntion auf dem Einheitskreis liegt, also gilt ja [mm] x^2+y^2=1, [/mm] oder?? Wenn ich das nach [mm] y^2 [/mm] auflöse, hab ich [mm] y^2=1-x^2. [/mm]
Kann ich das nicht einfach in die Funktion einsetzen, und dann die "neue" Funktion ableiten?
Also: [mm] x^4-x^2+1, [/mm] dann wäre die Ableitung: [mm] 4x^3-2x [/mm]
Nullstellen berechnen:
[mm] 4x^3-2x=0 [/mm]
[mm] 2x(2x^2-2)=0 [/mm]
[mm] x_1=0 [/mm] und [mm] y=\pm [/mm] 1
Kann man das so machen?

        
Bezug
Maximum bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Di 25.03.2008
Autor: abakus


> Man bestimme das Maximum der Funktion [mm]x^4+y^2[/mm] auf dem
> abgeschlossenen Einheitskreis.
>  Also jetzt muss ich ja erstmal die Ableitung bilden, die
> ist
>  [mm](4x^3,[/mm] 2y) und um die Extrema zu berechnen muss ja
> (x,y)=(0,0) gesetzt werden. Ich weiß ja, dass die Fukntion
> auf dem Einheitskreis liegt, also gilt ja [mm]x^2+y^2=1,[/mm] oder??
> Wenn ich das nach [mm]y^2[/mm] auflöse, hab ich [mm]y^2=1-x^2.[/mm]
>  Kann ich das nicht einfach in die Funktion einsetzen, und
> dann die "neue" Funktion ableiten?
>  Also: [mm]x^4-x^2+1,[/mm] dann wäre die Ableitung: [mm]4x^3-2x[/mm]
>  Nullstellen berechnen:
>  [mm]4x^3-2x=0[/mm]
>  [mm]2x(2x^2-2)=0[/mm]
>  [mm]x_1=0[/mm] und [mm]y=\pm[/mm] 1
>  Kann man das so machen?

Hallo,
vom Ansatz her hätte ich es genauso gemacht. Allerdings ist die Auswertung unvollständig.
Aus [mm]2x(2x^2-2)=0[/mm] folgt x=0 [mm] \vee [/mm] x=1 [mm] \vee [/mm] x=-1.
Teste zunächst mit der zweiten Ableitung, ob für jedes dieser x ein Maximum oder ein Minimum vorliegt. Erst dann kannst du zu den Maximumstellen von x die zugehörigen y-Werte angeben.
Viele Grüße
Abakus


Bezug
                
Bezug
Maximum bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:28 Mi 26.03.2008
Autor: blinktea

also bleibt nur noch der punkt (0/1) als Maximum. wenn ich das richtig sehe...

Bezug
                        
Bezug
Maximum bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:10 Mi 26.03.2008
Autor: abakus


> also bleibt nur noch der punkt (0/1) als Maximum. wenn ich
> das richtig sehe...

Die Punkte (0|-1), (1|0) und (-1|0) haben aber den gleichen Funktionswert wie (0|1). Jedes Mal gilt [mm] x^4+y^2=1. [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de