www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Maximum konvexe Fkt
Maximum konvexe Fkt < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum konvexe Fkt: Hinweis
Status: (Frage) beantwortet Status 
Datum: 10:09 So 14.11.2010
Autor: Kayle

Aufgabe
Sei f: [mm] \IR^n\to\IR [/mm] konvex und es gelte [mm] \forall m\in\IN \exists 0\le R\in\IR \forall |x|\ge [/mm] R: [mm] f(x)\ge [/mm] m|x|.

Zeigen Sie:
i) [mm] \forall y\in\IR^n [/mm] nimmt die Funktion

F(x):= [mm] \summe_{i=1}^{n}y_i x_i-f(x) [/mm]
ihr Maximum in einem Punkt [mm] x_y [/mm] an.

ii) [mm] x_y [/mm] ist nicht notwendig eindeutig bestimmt. (Gegenbeispiel angeben)
iii) Die Funkion

[mm] g(y):=max\{\summe_{i=1}^{n}y_i x_i -f(x) | x\in\IR^n\} [/mm]

ist konvex und stetig.
iv) Berechnen Sie g(y) für [mm] y\in\IR [/mm] beliebig und [mm] f:\IR\to\R, f(x)=e^{|x|}. [/mm]

Hallo,

ich komm bei meiner Aufgabe hier nicht weiter.

Kann mir vielleicht Jemand Hinweise geben, wie ich die einzelnen Teilaufgaben angehen könnte. Allein mit der Def. über konvexe Funktionen
[mm] f(\alpha x+(1-\alpha)y) \le \alpha f(x)+(1-\alpha)f(y), \forall x,y\in\IR^N, \alpha\in[0,1] [/mm] komme ich hier nicht weiter.

Bin dankbar über jede Hilfe!


Viele Grüße
Kayle

        
Bezug
Maximum konvexe Fkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:36 So 14.11.2010
Autor: Kayle

Mh, keine Ideen oder Hinweise? Ich find einfach kein Material um die Aufgabe zu lösen.

Gruß

Bezug
        
Bezug
Maximum konvexe Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 So 14.11.2010
Autor: Blech

Hi,


(i) Fang damit an, daß F konkav ist.
(ii) n=1, d.h. betrachte es im 1-dimensionalen und *zeichne* es Dir auf.
            Bau Dir f aus 2 Teilen zusammen. Der eine erfüllt die Bedingung, daß er lauter optimale Punkte enthält (d.h. eine Gerade), der andere erfüllt die Bedingung an f, daß es superlinear wächst (das [mm] $\forall m\in\IN\ \exists\, 0\le R\in\IR:\ \forall |x|\ge [/mm] R:\  [mm] f(x)\ge [/mm] m|x|. $ )

(iii) wie lautet die Bedingung für Konvexität, wenn Du da g einsetzt?

(iv) [mm] $y\in\IR$, [/mm] d.h. n=1, d.h. zeichnen, zeichnen, zeichnen.

ciao
Stefan

Bezug
                
Bezug
Maximum konvexe Fkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 So 14.11.2010
Autor: Kayle

Danke Stefan,

ich probier mich mal!

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de