www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Maximumprinzip
Maximumprinzip < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximumprinzip: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:27 Fr 28.05.2010
Autor: math101

Hallo, alle zusammen!!
Ich will  zeigen, dass die Beschränkheitsannahme im Maximumprinzip an das Gebiet U sehr wichtig ist, indem ich als Beispiel die Funktion f(z)=exp(exp(z)) im Streifen [mm] U=\{z\in \IC : |Im(z)|<\pi /2\} [/mm] untersuche. Ich habe aber keine Anhnung wie ich dran gehen soll.
Ich habe versucht |f(z)| auszurechnen, denn im Maximumprinzip geht es um |f| und wenn das Gebiet U beschränkt ist, dann muss das Maximum am Rand liegen, aber ich bekomme ziemlich komplizierte Funktion, die noch (glaube ich ) abgeleitet werden soll. Ich vermute, es muss irgendwie anders gehen, nicht so aufwendig.
Könnte mir jemand vielleicht einen Ratschlag geben, wie ich das bewerkstelligen kann?
Vielen Dank!
gruß

        
Bezug
Maximumprinzip: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:35 Sa 29.05.2010
Autor: math101

Hallo!!
ich habe die Aufgabe gemacht, würde mich freuen, wenn jemand drüber guckt und sagt ob es soweit richtig ist.
[mm] |f(x+iy)|=\sqrt{e^{2e^{x}cos(y)}cos^2(e^xsin(y))+e^{2e^xcos(y)}sin^2(e^xsin(y))} [/mm]
Setzt man [mm] y=\pi/2 [/mm] und [mm] -\pi/2, [/mm] dann ist [mm] |f(z)|_{|\partial S}=1, [/mm] weil
[mm] |f(x+i\pi/2)|=\sqrt{e^{2e^{x}0}cos^2(e^xi)+e^{2e^x0}sin^2(e^xi)}=\sqrt{cos^2(e^xi)+sin^2(e^xi)}=\sqrt{1}=1, [/mm] also am Rand ist betrag der Funktion gleich 1.
Aber wenn ich annehme, dass [mm] z\in \IR, [/mm] dann [mm] \limes_{z\rightarrow\infty}e^{e^x}=\infty. [/mm] Also hat die Funktion kein Maximum wenn S nicht beschränkt ist.
Vielen Dank im Voraus
Gruß

Bezug
                
Bezug
Maximumprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Mo 31.05.2010
Autor: fred97


> Hallo!!
>  ich habe die Aufgabe gemacht, würde mich freuen, wenn
> jemand drüber guckt und sagt ob es soweit richtig ist.
> [mm]|f(x+iy)|=\sqrt{e^{2e^{x}cos(y)}cos^2(e^xsin(y))+e^{2e^xcos(y)}sin^2(e^xsin(y))}[/mm]
>  Setzt man [mm]y=\pi/2[/mm] und [mm]-\pi/2,[/mm] dann ist [mm]|f(z)|_{|\partial S}=1,[/mm]
> weil
> [mm]|f(x+i\pi/2)|=\sqrt{e^{2e^{x}0}cos^2(e^xi)+e^{2e^x0}sin^2(e^xi)}=\sqrt{cos^2(e^xi)+sin^2(e^xi)}=\sqrt{1}=1,[/mm]
> also am Rand ist betrag der Funktion gleich 1.
>  Aber wenn ich annehme, dass [mm]z\in \IR,[/mm] dann
> [mm]\limes_{z\rightarrow\infty}e^{e^x}=\infty.[/mm] Also hat die
> Funktion kein Maximum wenn S nicht beschränkt ist.
>  Vielen Dank im Voraus




Nimm doch einfach mal ein x auf der reellen Achse:

$f(x) = [mm] e^{e^x}$ [/mm]

ist doch so was von unbeschränkt, "unbeschränkter gehts fast nicht mehr"

FRED

>  Gruß


Bezug
        
Bezug
Maximumprinzip: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Mo 31.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de