www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Maximumsprinzip
Maximumsprinzip < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximumsprinzip: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 So 17.09.2017
Autor: Paivren

Guten Tag!

Neue Runde:

Maximumsprinzip: Sei [mm] G\subseteq \IC [/mm] ein Gebiet, sei f: [mm] G-->\IC [/mm] holomorph. Für ein [mm] w\in [/mm] G gebe es eine Umgebung [mm] U\subseteq [/mm] G von w, sodass |f(w)| [mm] \ge [/mm] |f(z)| [mm] \forall z\in [/mm] U.

Dann ist f konstant.


Ich habe die Beweise dazu nachvollzogen, aber ist dieser Satz nicht ein Widerspruch in sich? Wenn der Betrag einer Funktion bei w größer ist als in der Umgebung, wie kann die Funktion dann konstant sein? Konstant heißt doch gerade auch, dass der Betrag eben überall gleich ist!

Verstehe ich was falsch? Oder könnte man den Satz auch einfach mit einem "=" formulieren?

MfG.

        
Bezug
Maximumsprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 So 17.09.2017
Autor: HJKweseleit


> Guten Tag!
>  
> Neue Runde:
>  
> Maximumsprinzip: Sei [mm]G\subseteq \IC[/mm] ein Gebiet, sei f:
> [mm]G-->\IC[/mm] holomorph. Für ein [mm]w\in[/mm] G gebe es eine Umgebung
> [mm]U\subseteq[/mm] G von w, sodass |f(w)| [mm]\ge[/mm] |f(z)| [mm]\forall z\in[/mm]
> U.
>  
> Dann ist f konstant.
>  
>
> Ich habe die Beweise dazu nachvollzogen, aber ist dieser
> Satz nicht ein Widerspruch in sich? Wenn der Betrag einer
> Funktion bei w größer ist als in der Umgebung, wie kann
> die Funktion dann konstant sein?

Weil [mm] \ge [/mm] auch = mit einschließt.

Die Aussage bedeutet im Umkehrschluss nämlich:

Eine holomorphe Funktion, die nicht konstant ist, hat folgende Eigenschaft: Innerhalb eines Gebietes, in dem und auf dessen Rand die Fkt. holomorph ist, befindet sich das betragsmäßige Maximum immer auf dem Rand (egal, wo man ihn wählt). Läge es in einem inneren Punkt, könnte man darum einen Rand ziehen, so dass innerhalb dieses Gebietes [mm] \subset [/mm] G dort das Maximum läge. Und das ist gerade nicht der Fall.

> Konstant heißt doch
> gerade auch, dass der Betrag eben überall gleich ist!
>  
> Verstehe ich was falsch? Oder könnte man den Satz auch
> einfach mit einem "=" formulieren?
>  
> MfG.


Bezug
                
Bezug
Maximumsprinzip: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:05 Di 19.09.2017
Autor: Paivren

Alles klar,

vielen Dank. So herum ist es verständlicher :)

Bezug
        
Bezug
Maximumsprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Mo 25.09.2017
Autor: fred97


> Guten Tag!
>  
> Neue Runde:
>  
> Maximumsprinzip: Sei [mm]G\subseteq \IC[/mm] ein Gebiet, sei f:
> [mm]G-->\IC[/mm] holomorph. Für ein [mm]w\in[/mm] G gebe es eine Umgebung
> [mm]U\subseteq[/mm] G von w, sodass |f(w)| [mm]\ge[/mm] |f(z)| [mm]\forall z\in[/mm]
> U.
>  
> Dann ist f konstant.
>  
>
> Ich habe die Beweise dazu nachvollzogen, aber ist dieser
> Satz nicht ein Widerspruch in sich? Wenn der Betrag einer
> Funktion bei w größer ist als in der Umgebung,

Oben steht nur [mm] \ge [/mm] !!



> wie kann
> die Funktion dann konstant sein? Konstant heißt doch
> gerade auch, dass der Betrag eben überall gleich ist!
>  
> Verstehe ich was falsch? Oder könnte man den Satz auch
> einfach mit einem "=" formulieren?
>  
> MfG.


An der Antwort meines Vorredners gefällt mir nicht, das der Rand des Gebietes ins Spiel gebracht wird.

Ich formuliere das Maximimprinzip so:

Sei $ [mm] G\subseteq \IC [/mm] $ ein Gebiet, sei $ f:  G [mm] \to \IC [/mm] $ holomorph und sei f nicht konstant. Dann hat $|f|$ in G kein lokales Maximum.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de