www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Maximumsprinzip
Maximumsprinzip < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximumsprinzip: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Mi 08.06.2011
Autor: T_sleeper

Aufgabe
Wir betrachten folgende Differentialgleichung
[mm] $u_t [/mm] + [mm] f(u)_x=\varepsilon u_{xx}$, [/mm] wobei [mm] \varepsilon [/mm] <<1.
Das Anfangswertproblem zu dieser Gleichung besitzt genau eine klassiche Lösung [mm] u^{\varepsilon}, [/mm] die das Maximumsprinzip erfüllt.

Hallo,

dieser Satz steht so nebenbei in einem Buch, das ich gerade studiere. Ich weiß aber leider nicht welche Eigenschaft hier mit Maximumsprinzip gemeint ist. Ich kenne diese Prinzipien nur für die Laplace Gleichung und die Wärmeleitungsgleichung. Aber die angegebene Gleichung ist ja von ganz anderer Form. Weiß jemand, was damit gemeint ist?

        
Bezug
Maximumsprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Mi 08.06.2011
Autor: fred97

Schau mal hier

             http://www.mathematik.uni-ulm.de/numerik/teaching/ss04/PartielleDgln/dgl.pdf

Kapitel 5

FRED

Bezug
                
Bezug
Maximumsprinzip: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:23 Di 14.06.2011
Autor: T_sleeper

Hallo nochmal,

ich schaue da nun schon länger drauf und sehe trotzdem noch nicht, welcher der Sätze da nun zutrifft. Und außerdem weiß ich auch nicht, warum die Gleichung genau eine klassische Lösung hat (die auch noch unendlich oft stetig diffbar sein soll). Kann man das aus dem Maximumsprinzip folgern oder gibt es da wieder einen besonderen Satz für?

Bezug
                        
Bezug
Maximumsprinzip: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:46 Mi 15.06.2011
Autor: T_sleeper

Hallo,

kann man vielleicht die Existenz und Eindeutigkeit der Lösung von [mm] $u_{t}+f(u)_{x}=\varepsilon u_{xx},u(x,0)=u_{0}(x) [/mm] $ mittels der Charakteristikenmethode beweisen? x ist jeweils reell und t>0. Mal angenommen die projizierten Charakteristiken [mm] \zeta(t) [/mm]  existieren bis zu einem gewissen Zeitpunkt T. Kann ich dann irgendwie folgern, dass das AWP eine klassische Lösung hat?

Ich finde ansonsten in allerhand Skripten immer nur Verweise für die eindeutige klassische Lösung dieses Problems auf irgendwelche Literatur, die ich bisher nicht auftreiben konnte. Oder weiß jemand sonst, wo ich dazu was finden könnte?

Bezug
                                
Bezug
Maximumsprinzip: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:22 Fr 17.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Maximumsprinzip: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Do 16.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de