www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Median der Binomialverteilung
Median der Binomialverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Median der Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Fr 02.07.2010
Autor: bestduo

Hallo,
ich soll den Median und das 90% und 95% Quantil der Binomialverteilung mit n=10 und p=0.3 berechnen.

Ich verstehe nicht, wie man das bei den Verteilungen macht.
Ich habe einfach mal für x die werte 0 bis 10 eingesetzt. soll ich jetzt davon den Median bilden oder ganz anders?

wäre für Hilfe dankbar

        
Bezug
Median der Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Fr 02.07.2010
Autor: abakus


> Hallo,
>  ich soll den Median und das 90% und 95% Quantil der
> Binomialverteilung mit n=10 und p=0.3 berechnen.
>  
> Ich verstehe nicht, wie man das bei den Verteilungen
> macht.

Hallo,
das hätte ich auch nicht gewusst. Ein Blick zu Wikipedia hat in meinem Fall gehölfen:
http://de.wikipedia.org/wiki/Median#Beispiel
Gruß Abakus

>  Ich habe einfach mal für x die werte 0 bis 10 eingesetzt.
> soll ich jetzt davon den Median bilden oder ganz anders?
>  
> wäre für Hilfe dankbar


Bezug
                
Bezug
Median der Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Fr 02.07.2010
Autor: bestduo

da war ich auch schon drauf, aber egal was für ein x ich einsetze, ich bekomme nicht 0,5 raus, wie in dem beispiel..,
bräuchte immernoch Hilfe...

Bezug
                        
Bezug
Median der Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Fr 02.07.2010
Autor: abakus


> da war ich auch schon drauf, aber egal was für ein x ich
> einsetze, ich bekomme nicht 0,5 raus, wie in dem
> beispiel..,
> bräuchte immernoch Hilfe...

Also wenn ich die Wikipedia-Gleichung (mit dem Infimum) richtig interpretiere, musst du P(X=0), P(X=1), ... usw bis P(X=k) so lange addieren, bis die Summe dieser Wahrscheinlichkeiten den Wert 0,5 erreicht oder übersteigt.
Der erste Wert k, für den das zutrifft, ist der Median.


Bezug
                                
Bezug
Median der Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 Fr 02.07.2010
Autor: bestduo

aso danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de