www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Mehrfachintegrale
Mehrfachintegrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrfachintegrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 So 08.06.2008
Autor: Drisch

Aufgabe
Integral über f(x,y)= x + y². Integrationsbereich soll das Dreieck mit den Eckpunkten (0,0), (1,0) und (0,1) sein.

Hallo, ich habe ein riesiges brett vorm kopf. also, zu beginn stell ich mein integral auf. Integrationsbereich beim Integral x ist zwischen 0 und 1. für das innere integral auch 0 und 1? oder x?
man muss doch darauf achten in welchem y bereich das ist, oder?
danke im voraus.

ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Mehrfachintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 So 08.06.2008
Autor: schachuzipus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Patricia,

> Integral über f(x,y)= x + y². Integrationsbereich soll das
> Dreieck mit den Eckpunkten (0,0), (1,0) und (0,1) sein.
>  Hallo, ich habe ein riesiges brett vorm kopf. also, zu
> beginn stell ich mein integral auf. Integrationsbereich
> beim Integral x ist zwischen 0 und 1. [ok] für das innere
> integral auch 0 und 1? oder x? [notok]

Die Grenzen für y hängen doch von x ab, die (Geraden)Gleichung, die (0,1) und (1,0) verbindet, ist  y=1-x

Also hast du mit $0\le x\le 1$ für y: $0\le y\le 1-x$

Berechne also $\int\limits_{x=0}^{x=1} \ \int\limits_{y=0}^{y=1-x}f(x,y) \ dydx}$

>  man muss doch darauf achten in welchem y bereich das ist,
> oder?
>  danke im voraus.
>  
> ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


LG

schachuzipus

Bezug
                
Bezug
Mehrfachintegrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:43 So 08.06.2008
Autor: Drisch

ach, danke!

Bezug
                
Bezug
Mehrfachintegrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:14 Mi 11.06.2008
Autor: Drisch

wenn ich nun x+y ² integrieren möchte nach y, mit den Grenzen y=0 und y=1-x, dann habe ich doch als stammfunktion 1/2 y², bzw. eingesetzt 1/2 (1-x)², ist das richtig? oder ist es ein fehler das x als konstante zu betrachten (fällt ja dann weg) oder muss ich das x auch noch integrieren?

Bezug
                        
Bezug
Mehrfachintegrale: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Mi 11.06.2008
Autor: Martinius

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo,

wenn Du das innere Integral des Integranden $x+y^2$ berechnen möchtest, so wäre das:


$ \int\limits_{x=0}^{x=1} \ \int\limits_{y=0}^{y=1-x}x+y^2  \ dydx} =\int_{x=0}^{x=1}\left[x*y+\bruch{1}{3}y^3\right]_{y=0}^{y=1-x} dx$


; so ich mich nicht irre.

LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de