www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Mehrheit, Zufallskette
Mehrheit, Zufallskette < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrheit, Zufallskette: Ansatz
Status: (Frage) überfällig Status 
Datum: 17:29 Mi 29.01.2014
Autor: bubuhu

Hallo,

ich stehe vor dem Problem, Testergebnisse von automatisierten Tests auswerten zu müssen. Leider fehlt mir dafür ein Ansatz. Um mein Problem leichter zu beschreiben, versuche ich eine einfache "Aufgabenstellung" zu konstruieren:

In einer Urne befinden sich 100 rote, 30 grüne, 10 blaue und 5 schwarze Kugeln. Es soll 10 mal gezogen werden (mit Zurücklegen, ohne Berücksichtigung der Reihenfolge). Wie groß ist die Wahrscheinlichkeit, dass die roten Kugeln unter den gezogenen eine relative Mehrheit bilden.

Natürlich könnte man jetzt einen Baum aufzeichnen bzw. alles manuell lösen; in meinen tatsächlichen Testergebnissen gibt es aber mehr als 100 "Farben", was es nicht unbedingt einfach macht.

Mein Ansatz wäre die Berechnung einer Bernoulli Kette gewesen mit P(X>=6). Dabei wird aber z.B. folgendes Ergebnis nicht berücksichtigt, obwohl eine relative Mehrheit für rot vorliegt:
(rt, rt, rt, rt, ge, ge, ge, bl, bl, sw).

Bin für jeden Tipp dankbar!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Mehrheit, Zufallskette: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Do 30.01.2014
Autor: Gonozal_IX

Hiho,

> Mein Ansatz wäre die Berechnung einer Bernoulli Kette gewesen mit P(X>=6). Dabei wird aber z.B. folgendes Ergebnis nicht berücksichtigt, obwohl eine relative Mehrheit für rot vorliegt:
>  (rt, rt, rt, rt, ge, ge, ge, bl, bl, sw).

Jop.

Seien [mm] $X_r,X_g,X_b,X_s$ [/mm] die Anzahl an Kugeln der jeweiligen Farbe.

Dann sind diese binomialverteilt mit Parametern [mm] $p_r,p_g,p_b,p_s$. [/mm]

Du suchst nun:

[mm] $P\left(X_r > \max(X_g,X_b,X_s)\right)$ [/mm]

Allerdings seh ich bisher auch keinen schönen Weg, das auszurechnen, da deine ZV nicht unabhängig sind.

edit: Vielleicht ist das zielführend:

[mm] $P\left(X_r > \max(X_g,X_b,X_s)\right) [/mm] = [mm] P\left(2X_r > X_g + \max(X_b,X_s) + |X_g - \max(X_b,X_s)|\right) [/mm] = [mm] P\left(4X_r > 2X_g + X_b + X_s + |X_b - X_s| + 2|X_g - \max(X_b,X_s)|\right)$ [/mm]

Nun gilt: [mm] $X_g [/mm] + [mm] X_b [/mm] + [mm] X_s [/mm] = 10 - [mm] X_r$ [/mm]

[mm] $=P\left(5X_r > 10 + X_g + |X_b - X_s| + |2X_g - X_b - X_s - |X_b - X_s||\right)$ [/mm]

[mm] $=P\left(5X_r > 10 + X_g + X_b - X_s + |2X_g - 2X_b|, X_b \ge X_s\right) [/mm] + [mm] P\left(5X_r > 10 + X_g + X_s - X_b + |2X_g - 2X_s |, X_s > X_b\right)$ [/mm]

Nun gilt: $10 + [mm] X_g [/mm] + [mm] X_b [/mm] - [mm] X_s [/mm] = 10 - [mm] X_s [/mm] - [mm] X_g [/mm] - [mm] X_b [/mm] + [mm] 2X_g [/mm] + [mm] 2X_b [/mm] = [mm] X_r [/mm] + 2 [mm] X_g [/mm] + 2 [mm] X_b$ [/mm] und damit:

[mm] $=P\left(4X_r > 2X_g + 2X_b + |2X_g - 2X_b|, X_b \ge X_s\right) [/mm] + [mm] P\left(4X_r > 2X_g - 2X_s + |2X_g - 2X_s |, X_s > X_b\right)$ [/mm]

[mm] $=P\left(2X_r > X_g + X_b + |X_g - X_b|, X_b \ge X_s\right) [/mm] + [mm] P\left(2X_r > X_g - X_s + |X_g - X_s |, X_s > X_b\right)$ [/mm]

[mm] $=P\left(X_r > \max(X_g,X_b), X_b \ge X_s\right) [/mm] + [mm] P\left(X_r > \max(X_g,X_s), X_s > X_b\right)$ [/mm]

Ist aber wohl nicht zielführend, da es offensichtlich das gleiche ist wie oben.... *hmpf*

Gruß,
Gono.

Bezug
        
Bezug
Mehrheit, Zufallskette: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 13.02.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de