www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Menge Dicht, Abschluss
Menge Dicht, Abschluss < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge Dicht, Abschluss: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:24 Fr 08.02.2013
Autor: theresetom

Aufgabe
Definition:
Eine Menge D [mm] \subset [/mm] X ist dicht in X , wenn [mm] \forall [/mm] ofenne Mengen U gilt dass D [mm] \cap [/mm] U [mm] \not= \{\} [/mm]
Proposition:
D dicht in X <=> [mm] \overline{D} [/mm] = X

Beweis:
=> [mm] \forall [/mm] U offen => (D [mm] \cap) \not= \{\} [/mm]
X ohne [mm] \overline{D} [/mm] offen
-> (D [mm] \cap [/mm] X\ [mm] \overline{D} [/mm] ) [mm] \not= \{ \} [/mm]
nur möglich wenn X \ [mm] \overline{D} =\{ \} [/mm]
Den Beweis denke ich verstanden zu haben

<=
Haben wir gemacht ich verstehe ihn aber 0 %
Betrachte [mm] ((D^c)^o)^c [/mm] = [mm] \overline{D} [/mm]
<=> [mm] (((D^c)^o)^c)^c [/mm] = [mm] \overline{D}^c [/mm]
rechte Seite = [mm] \{\} [/mm] weil [mm] \overline{D}=X [/mm]
Betrachte (U [mm] \cap [/mm] X) = [mm] (U\cap(D \cup D^c)) [/mm] = (U [mm] \cap [/mm] D) [mm] \cup [/mm] ( U [mm] \cap D^c) [/mm] => (D [mm] \cap [/mm] U) [mm] \not= \{ \} [/mm]
Kann mir den beweis wer erklären??

Danke
LG

        
Bezug
Menge Dicht, Abschluss: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Fr 08.02.2013
Autor: steppenhahn

Hallo,


> Definition:
>  Eine Menge D [mm]\subset[/mm] X ist dicht in X , wenn [mm]\forall[/mm]
> ofenne Mengen U gilt dass D [mm]\cap[/mm] U [mm]\not= \{\}[/mm]
>  
> Proposition:
>  D dicht in X <=> [mm]\overline{D}[/mm] = X

>  Beweis:
>  => [mm]\forall[/mm] U offen => (D [mm]\cap) \not= \{\}[/mm]

>  X ohne
> [mm]\overline{D}[/mm] offen
>  -> (D [mm]\cap[/mm] X\ [mm]\overline{D}[/mm] ) [mm]\not= \{ \}[/mm]

>  nur möglich
> wenn X \ [mm]\overline{D} =\{ \}[/mm]
>  Den Beweis denke ich
> verstanden zu haben

Gut :-)


> <=
>  Haben wir gemacht ich verstehe ihn aber 0 %
>  Betrachte [mm]((D^c)^o)^c[/mm] = [mm]\overline{D}[/mm]


Das sind Rechenregeln. (Die Herleitung von diesen gehört nicht zum Beweis, das müsst ihr also schonmal vorher gemacht haben)


>  <=> [mm](((D^c)^o)^c)^c[/mm] = [mm]\overline{D}^c[/mm]

Hier wurde auf beiden Seiten das Komplement gebildet.

>  rechte Seite = [mm]\{\}[/mm] weil [mm]\overline{D}=X[/mm]


Also hast du jetzt (weil [mm] $(A^{c})^{c} [/mm] = A$):

[mm] $(D^{c})^{o} [/mm] = [mm] \emptyset$. [/mm]  (*)


Sei nun $U [mm] \subset [/mm] X$ eine beliebige offene Menge, $U [mm] \not= \emptyset$ [/mm] (das gehört mit zur Definition von Dichtheit, dass die Menge nicht leer sein darf). Wir wollen zeigen, dass $U [mm] \cap [/mm] D [mm] \not= \emptyset$. [/mm]

>  Betrachte U = (U [mm]\cap[/mm] X) = [mm](U\cap(D \cup D^c))[/mm] = (U [mm]\cap[/mm] D)
> [mm]\cup[/mm] ( U [mm]\cap D^c)[/mm]

Bis hierhin sind nur Rechenregeln angewandt worden.
Angenommen, es wäre $U [mm] \cap [/mm] D = [mm] \emptyset$. [/mm] Dann wäre

$U = U [mm] \cap D^{c}$ [/mm]

Jetzt wenden wir auf beiden Seiten [mm] $()^{o}$ [/mm] (Inneres bilden) an und benutzen auf der rechten Seite eine weitere Rechenregel:

[mm] $U^{o} [/mm] = [mm] U^{o} \cap (D^{c})^{o}$ [/mm]

Weil $U$ offen ist, gilt [mm] $U^{o} [/mm] = U$. Wegen (*) folgt insgesamt: $U = [mm] =\emptyset$, [/mm] ein Widerspruch.

Viele Grüße,
Stefan

Bezug
                
Bezug
Menge Dicht, Abschluss: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Fr 08.02.2013
Autor: theresetom


> $ [mm] (((D^c)^o)^c)^c [/mm] $ = $ [mm] \overline{D}^c [/mm] $

Was wären das für rechenregeln? Dies war eine Aufgabe in Rahmen von Analysis 1 - Könntest du mit vlt die Regel aufschreiben sodass ich wüsste nach was ich suchen muss?
Ich kenne nur die regel:  F abgeschlossen <=> [mm] F^c [/mm] offen..



> $ U = U [mm] \cap D^{c} [/mm] $

> Jetzt wenden wir auf beiden Seiten $ [mm] ()^{o} [/mm] $ (Inneres bilden) an und benutzen auf der rechten Seite eine weitere Rechenregel:

> $ [mm] U^{o} [/mm] = [mm] U^{o} \cap (D^{c})^{o} [/mm] $

Hat die rechenregel (A [mm] \cup B)^o [/mm] = [mm] A^o \cup B^o [/mm] damit zu tun dass die Vereinigung von offenen mengen offen ist? Und die vereinigung von abgeschlossenen mengen abgeschlossen?

LG,danke

Bezug
                        
Bezug
Menge Dicht, Abschluss: Antwort
Status: (Antwort) fertig Status 
Datum: 00:49 Sa 09.02.2013
Autor: steppenhahn

Hallo,


> > [mm](((D^c)^o)^c)^c[/mm] = [mm]\overline{D}^c[/mm]
>  Was wären das für rechenregeln?

Nun, hier wurde eben verwendet:

[mm] $((D^{c})^{o})^{c} [/mm] = [mm] \overline{D}$. [/mm]

Ich weiß leider nicht, unter welchen Begriff das fällt. Aber wenn das bei euch in der Vorlesung so bewiesen wurde, müsste doch vorher auch etwas zu diesen Regeln gesagt worden sein?

> Dies war eine Aufgabe in
> Rahmen von Analysis 1 - Könntest du mit vlt die Regel
> aufschreiben sodass ich wüsste nach was ich suchen muss?
>  Ich kenne nur die regel:  F abgeschlossen <=> [mm]F^c[/mm] offen..

Die hilft hier aber nicht.



> > [mm]U = U \cap D^{c}[/mm]
>  
> > Jetzt wenden wir auf beiden Seiten [mm]()^{o}[/mm] (Inneres bilden)
> an und benutzen auf der rechten Seite eine weitere
> Rechenregel:
>  
> > [mm]U^{o} = U^{o} \cap (D^{c})^{o}[/mm]


>  Hat die rechenregel (A
> [mm]\cup B)^o[/mm] = [mm]A^o \cup B^o[/mm] damit zu tun dass die Vereinigung
> von offenen mengen offen ist?

Etwas.
Aber die von dir aufgeschriebene Rechenregel gilt gar nicht (bsp: A = (0,1), B = [1,2).)

Es gilt nur

$(A [mm] \cap B)^{o} [/mm] = [mm] A^{o} \cap B^{o}$ [/mm]

und

[mm] $\overline{A \cup B} [/mm] = [mm] \overline{A} \cup \overline{B}$. [/mm]




Viele Grüße,
Stefan

Bezug
                                
Bezug
Menge Dicht, Abschluss: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Sa 09.02.2013
Autor: theresetom


> $ [mm] ((D^{c})^{o})^{c} [/mm] = [mm] \overline{D} [/mm] $.

> Ich weiß leider nicht, unter welchen Begriff das fällt. Aber wenn das bei euch in der Vorlesung so bewiesen wurde, müsste doch vorher auch etwas zu diesen Regeln gesagt worden sein?

Nein leider nicht. der Prof hat eine zeichung gemacht um uns das zu skizzieren. Ich hab da aber nicht wirklich was mitnehmen können davon..
Kann ich irgendwo nachschlagen bez der Rechenregel?

LG

Bezug
                                        
Bezug
Menge Dicht, Abschluss: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Sa 09.02.2013
Autor: steppenhahn

Hallo,


>
> > [mm]((D^{c})^{o})^{c} = \overline{D} [/mm].
>  
> > Ich weiß leider nicht, unter welchen Begriff das fällt.
> Aber wenn das bei euch in der Vorlesung so bewiesen wurde,
> müsste doch vorher auch etwas zu diesen Regeln gesagt
> worden sein?

> Nein leider nicht. der Prof hat eine zeichung gemacht um
> uns das zu skizzieren. Ich hab da aber nicht wirklich was
> mitnehmen können davon..
>  Kann ich irgendwo nachschlagen bez der Rechenregel?


Man kann ja definieren:

[mm] $M^{o} [/mm] = [mm] \bigcup_{U \subset M, U \mbox{ offen}}U$, [/mm]    und    [mm] $\overline{M} [/mm] = [mm] \bigcap_{A \supset M, A \mbox{ abgeschlossen}} [/mm] A$.

Wenn du diese Definitionen hinnimmst, ist es im Wesentlichen die "De Morgansche Regel" (beim zweiten Gleichheitszeichen):

[mm] $((D^{c})^{o})^{c} [/mm] = [mm] \left(\bigcup_{U \subset D^{c}, U \mbox{ offen}}U\right)^{c} [/mm] = [mm] \bigcap_{U \subset D^{c}, U \mbox{ offen}} U^{c}$ [/mm]

Jetzt schreibe $A = [mm] U^{c}$ [/mm] abgeschlossen

% = [mm] \bigcap_{A^{c} \subset D^{c}, A \mbox{ abgeschlossen}} [/mm] A = [mm] \bigcap_{A \supset D, A \mbox{ abgeschlossen}} [/mm] A = [mm] \overline{D}$. [/mm]


Viele Grüße,
Stefan

Bezug
                                                
Bezug
Menge Dicht, Abschluss: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 Di 19.02.2013
Autor: theresetom

Hallo, danke für die Antwort.
Ich verstehe die Gleichheit jedoch nicht:
[mm] \left(\bigcup_{U \subset D^{c}, U \mbox{ offen}}U\right)^{c} [/mm] = [mm] \bigcap_{U \subset D^{c}, U \mbox{ offen}} U^{c} [/mm]
Kannst du diese mir vlt. nochmal kurz erklären, wie du darauf kommst. Ich verstehe nicht ganz wieso da dann plötzlich eine Durchschnitt steht und keine vereinigung mehr.


lg

Bezug
                                                        
Bezug
Menge Dicht, Abschluss: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Di 19.02.2013
Autor: steppenhahn

Hallo,


>  Ich verstehe die Gleichheit jedoch nicht:
>   [mm]\left(\bigcup_{U \subset D^{c}, U \mbox{ offen}}U\right)^{c}[/mm]
> = [mm]\bigcap_{U \subset D^{c}, U \mbox{ offen}} U^{c}[/mm]
> Kannst du diese mir vlt. nochmal kurz erklären, wie du
> darauf kommst. Ich verstehe nicht ganz wieso da dann
> plötzlich eine Durchschnitt steht und keine vereinigung
> mehr.

Das sind die []De Morganschen Gesetze.

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de