www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Menge Stetigkeitspunkte?
Menge Stetigkeitspunkte? < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge Stetigkeitspunkte?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 Mi 07.05.2014
Autor: elduderino

Aufgabe
Bestimmen Sie die Menge der Stetigkeitspunkte der folgenden Abbildungen

[mm] f(x,y)=\begin{cases} xycos \bruch{1}{x^2}+\bruch{(y+1)sin(x)}{x}, & \mbox{für } x \mbox{ /not=0} \\ 0, & \mbox{für } x \mbox{ =0} \end{cases} [/mm]

[mm] g(x,y)=\begin{cases} arctan \bruch{xy^2}{x^2+y^4} , & \mbox{für } (x,y) \mbox{/not=(0,0)} \\ 0, & \mbox{für } (x,y) \mbox{=0} \end{cases} [/mm]

Ich fang mal mit f(x,y) an.

Als Komposition stetiger Funktionen [mm] (\bruch{1}{x^{2}} [/mm] ist stetig, da x [mm] \not=0) [/mm] ist f auf [mm] {{(x,y)\in \IR^{2} | x \not=0}} [/mm] stetig.

Ich würde als nächstes eine Fallunterscheidung machen wollen, erstmal [mm] y_{0}=0 [/mm] setzen und den Limes bilden. Und genau da fangen die Probleme an, lass ich x und y gegen 0 laufen, oder nur eins von beiden?

Grüße, Enno

        
Bezug
Menge Stetigkeitspunkte?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Mi 07.05.2014
Autor: leduart

Hallo
in einer [mm] \delta [/mm] Umgebung von (0,0) muss |f|< epsilon sein für alle x,y in der Umgebung.  also müssen beide gegen 0 gehen. sie dir erst mal den GW von sin(x)/x für x gegen 0 an, dann bist du mit f schon fast fertig.
Gruß leduart

Bezug
                
Bezug
Menge Stetigkeitspunkte?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:27 Mi 07.05.2014
Autor: elduderino

Der Grenzwert von [mm] \bruch{sin(x)}{x} [/mm] für x->0 sollte 1 sein. Wenn ich mit l'Hospital ableite, hab ich [mm] \bruch{cos(x)}{1}, [/mm] also cos(0) also 1.
Ich nehme also an, dass durch das Wegfallen von y im Zähler nur noch quasi [mm] \bruch{(0+1)*sin(x)}{x} [/mm] bleibt, welches den Limes von 1 hat. Der erste Term sollte wegfallen wegen der Multiplikation richtig?

Bezug
                        
Bezug
Menge Stetigkeitspunkte?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Mi 07.05.2014
Autor: fred97


> Der Grenzwert von [mm]\bruch{sin(x)}{x}[/mm] für x->0 sollte 1
> sein. Wenn ich mit l'Hospital ableite, hab ich
> [mm]\bruch{cos(x)}{1},[/mm] also cos(0) also 1.

Ja, es gilt [mm] \bruch{sin(x)}{x} \to [/mm] 1  für x [mm] \to [/mm] 0.


>  Ich nehme also an, dass durch das Wegfallen von y im
> Zähler nur noch quasi [mm]\bruch{(0+1)*sin(x)}{x}[/mm] bleibt,
> welches den Limes von 1 hat. Der erste Term sollte
> wegfallen wegen der Multiplikation richtig?

Ja, dann hast Du für x [mm] \ne [/mm] 0:

f(x,0)= [mm] \bruch{sin(x)}{x} \to [/mm] 1 [mm] \ne [/mm] 0=f(0,0)  für x [mm] \to [/mm] 0.

Und das bedeutet ?

FRED

  


Bezug
                                
Bezug
Menge Stetigkeitspunkte?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:48 Mi 07.05.2014
Autor: elduderino

Das bedeutet, dass f unstetig ist im Punkt (0,0), wenn ich nicht irre. Reicht das so als Antwort, oder muss das ganze nochmal formal aufgeschrieben werden? Heißt das auch, dass es keine Stetigkeitspunkte gibt, oder sind alle Punkte außer (0,0) Stetigkeitspunkte?

Bezug
                                        
Bezug
Menge Stetigkeitspunkte?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:41 Mi 07.05.2014
Autor: elduderino

Niemand?

Bezug
                                        
Bezug
Menge Stetigkeitspunkte?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:52 Mi 07.05.2014
Autor: fred97


> Das bedeutet, dass f unstetig ist im Punkt (0,0), wenn ich
> nicht irre.

Ja

>  Reicht das so als Antwort, oder muss das ganze
> nochmal formal aufgeschrieben werden?

Das hab ich doch für Dich getan !

> Heißt das auch, dass
> es keine Stetigkeitspunkte gibt, oder sind alle Punkte
> außer (0,0) Stetigkeitspunkte?

Oben hast Du ja schon richtig bemerkt: f ist auf $ [mm] \{(x,y)\in \IR^{2} | x \not=0\} [/mm] $ stetig.

Bleiben also noch die Punkte [mm] (0,y_0) \quad (y_0 \in \IR) [/mm]

Für [mm] y_0 \ne [/mm] -1 haben wir:

  [mm] f(x,y_0) \to y_0+1\ne 0=f(0,y_0) [/mm]  für x [mm] \to [/mm] 0

(begründe das !)

Das bedeutet: f ist in [mm] (0,y_0) [/mm] nicht stetig , falls [mm] y_0 \ne [/mm] -1 ist.

Damit Du auch was zu tun hast: ist f in (0,-1) stetig oder nicht ?

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de