www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Axiomatische Mengenlehre" - Menge aller Funktionen
Menge aller Funktionen < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge aller Funktionen: Tipp, Idee, Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:09 Sa 01.10.2011
Autor: Mija

Aufgabe
Zeige, dass aus dem Extensionalitätsprinzip, den Mengenexistenzprinzipien
und den zusätzichen Mengenaxiomen folgt, dass für beliebige Mengen $R$ und $S$ auch [mm] $S^R$ [/mm] eine Menge ist.

Hallo,

also es ist ja [mm] $S^R [/mm] := [mm] \{ f | f: R \to S\}$ [/mm] die Menge aller Funktionen von R nach S.

Brauche ich hier nur das Collection priciple anwenden mit $A=R$ und $B=S$ und bin dann schon fertig?

Das Collection principle besagt: Falls $A$ eine Menge ist und [mm] $\phi(x,y)$ [/mm] eine Eigenschaft, und falls [mm] $(\forall [/mm] x [mm] \in [/mm] A) [mm] \exists [/mm] y [mm] \phi(x,y)$, [/mm] dann existiert eine Menge B, so dass [mm] $(\forall [/mm] x [mm] \in A)(\exists [/mm] y [mm] \in [/mm] B) [mm] \phi(x,y)$ [/mm]

Irgendwas fehlt doch da noch?!

Ich würde mich freuen, wenn mir jemand weiterhelfen könnte!



        
Bezug
Menge aller Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:31 So 02.10.2011
Autor: hippias


> Zeige, dass aus dem Extensionalitätsprinzip, den
> Mengenexistenzprinzipien
>  und den zusätzichen Mengenaxiomen folgt, dass für
> beliebige Mengen [mm]R[/mm] und [mm]S[/mm] auch [mm]S^R[/mm] eine Menge ist.
>  Hallo,
>  
> also es ist ja [mm]S^R := \{ f | f: R \to S\}[/mm] die Menge aller
> Funktionen von R nach S.
>  
> Brauche ich hier nur das Collection priciple anwenden mit
> [mm]A=R[/mm] und [mm]B=S[/mm] und bin dann schon fertig?
>  
> Das Collection principle besagt: Falls [mm]A[/mm] eine Menge ist und
> [mm]\phi(x,y)[/mm] eine Eigenschaft, und falls [mm](\forall x \in A) \exists y \phi(x,y)[/mm],
> dann existiert eine Menge B, so dass [mm](\forall x \in A)(\exists y \in B) \phi(x,y)[/mm]
>  
> Irgendwas fehlt doch da noch?!
>  
> Ich würde mich freuen, wenn mir jemand weiterhelfen
> könnte!
>  

Ich wuerde Dur gerne helfen, wuerde aber gerne wissen, wie ihr Funktionen definiert habt: Als Menge von Kuratowski-Paaren? Dein Existenzbeweis scheint in der Tat nicht richtig zu sein, denn Du hast "nur" die Existenz einer Menge, deren Elemente "irgendwie" mittels [mm] $\phi$ [/mm] in einer Beziehung zu denen aus $A$ stehen. Habt ihr schon bewiesen, dass [mm] $A\times [/mm] B$ eine Menge ist, falls $A,B$ Mengen sind?

Ich wuerde ungefaehr so vorgehen: [mm] $F:=\{f: f\in P(R\times S)\wedge \forall x,y,y'((x,y), (x,y')\in f\rightarrow y= y')\wedge \forall r\exists s\/ (r\in R\vee s\in S\wedge (r,s)\in f)\}$, [/mm] wobei [mm] $P(R\times [/mm] S)$ die Potenzmenge von [mm] $R\times [/mm] S$ sein soll. $F$ ist nun die Menge aller Funktionen [mm] $:R\to [/mm] S$ und nach dem Aussonderungsprinzip ist $F$ eine Menge; schlicht gesagt [mm] $S^{R}$ [/mm] ist als Teilmenge von [mm] $P(R\times [/mm] S)$ eine Menge.

Reicht Dir das? Wenn nicht, koenntest Du mir vielleicht die Axiome, die in der Aufgabenstellung genannt wurden, kurz mitteilen.
    

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de