www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Menge bestimmen
Menge bestimmen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Mo 18.04.2005
Autor: MrPink

Hallo, ich habe folgende Aufgabe gefunden:

Wieviele nat. Zahlen <= 1000.000 gibt es, die weder in der Form [mm] x^2 [/mm] noch [mm] x^3 [/mm] noch [mm] x^5 [/mm] sind ???


Also ich muss dass ganze nachher wohl durch Mengeninklusion machen, aber wie kommen ich an die Mächtigkeit der Menge aller Zahlen, die nicht in der Form [mm] x^2 [/mm]  / [mm] x^3 [/mm] / [mm] x^5 [/mm] sind. Gibt es dort irgendwas mit teilern ???

Danke im Voraus

        
Bezug
Menge bestimmen: bitte KorrekturLesen
Status: (Antwort) fertig Status 
Datum: 11:09 Di 19.04.2005
Autor: DaMenge

Hi ,

kann ja sein, dass ich mich irre, aber es gibt nur 1000 Quadratzahlen zwischen 0 und 1 Million, ebenso kann man die Anzahl der Qubikzahlen und der 5er-Potenzen bestimmen.

jetzt muss man nur noch darauf aufpassen, dass keine Quadratzahl zugleich Qubikzahl ist, dies passiert aber nur bei $ [mm] (2^3)^2=2^6=(2^2)^3 [/mm] $ und entsprechend bei  [mm] 1^6 [/mm] , [mm] 3^6 [/mm] , 2^12 , 2^18 , 3^12 , [mm] 2^6*3^6 [/mm]

entsprechendes kann man sich für Qubikzahlen, die keine 5er-Potenzen sein dürfen und Quadratzahlen, die keine 5er-Potenzen sein dürfen überlegen.

Damit hättest du dann alle Zahlen - oder übersehe ich etwas?
viele grüße
DaMenge

Bezug
                
Bezug
Menge bestimmen: stimmt wohl
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:29 Mi 20.04.2005
Autor: Peter_Pein

Hallo,

Deine Überlegungen sind richtig.

Da ich auch öfter was übersehe, habe ich mal den Compi drauf losgelassen.
Eine Zeile Programmcode reicht, um die Frage von MrPink zu beantworten:

1: 10^6 - Length[Apply[Union, Map[Function[{i}, Range[10^(6/i)]^i], {2, 3, 5}]]]
2: 998899

Der Funktionsaufruf Range.. liefert die Liste der ganzen Zahlen von 1 bis zur größten ganzen Zahl, die kleiner als die i-te Wurzel aus einer Million ist. Diese werden dann in die i-te Potenz erhoben, dass sich die Liste aller [mm] $x^i$ [/mm] zwischen 1 und [mm] $10^6$ [/mm] ergibt. Diese Funktion von i wird auf die ersten 3 Primzahlen angewandt und auf die Liste der Ergebnisse die Funktion zur Bildung von Vereinigungsmengen losgelassen. Dies entfernt die Doubletten. Von der Million Zahlen zwischen 1 und [mm] $10^6$ [/mm] wird nun die Anzahl der eben ermittelten Zahlen abgezogen, um das gewünschte Ergebnis zu erhalten.

Daraus lernen wir mit Sicherheit den folgenden Satz:
Es ist wesentlich einfacher zu programmieren, als zu erklären ;-)
(Lemma: Die Menge aller kommentierenden Zeichenketten in Programmcode ist leer. [happy])

Alles Gute,
Peter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de